Все подмассивы массива python

array — Efficient arrays of numeric values¶

This module defines an object type which can compactly represent an array of basic values: characters, integers, floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects stored in them is constrained. The type is specified at object creation time by using a type code, which is a single character. The following type codes are defined:

    It can be 16 bits or 32 bits depending on the platform.

Changed in version 3.9: array(‘u’) now uses wchar_t as C type instead of deprecated Py_UNICODE . This change doesn’t affect its behavior because Py_UNICODE is alias of wchar_t since Python 3.3.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implementation). The actual size can be accessed through the array.itemsize attribute.

The module defines the following item:

A string with all available type codes.

The module defines the following type:

class array. array ( typecode [ , initializer ] ) ¶

A new array whose items are restricted by typecode, and initialized from the optional initializer value, which must be a list, a bytes-like object , or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist() , frombytes() , or fromunicode() method (see below) to add initial items to the array. Otherwise, the iterable initializer is passed to the extend() method.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication. When using slice assignment, the assigned value must be an array object with the same type code; in all other cases, TypeError is raised. Array objects also implement the buffer interface, and may be used wherever bytes-like objects are supported.

Raises an auditing event array.__new__ with arguments typecode , initializer .

The typecode character used to create the array.

The length in bytes of one array item in the internal representation.

Append a new item with value x to the end of the array.

Return a tuple (address, length) giving the current memory address and the length in elements of the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as array.buffer_info()[1] * array.itemsize . This is occasionally useful when working with low-level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl() operations. The returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

When using array objects from code written in C or C++ (the only way to effectively make use of this information), it makes more sense to use the buffer interface supported by array objects. This method is maintained for backward compatibility and should be avoided in new code. The buffer interface is documented in Buffer Protocol .

“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other types of values, RuntimeError is raised. It is useful when reading data from a file written on a machine with a different byte order.

Return the number of occurrences of x in the array.

Append items from iterable to the end of the array. If iterable is another array, it must have exactly the same type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements must be the right type to be appended to the array.

Appends items from the string, interpreting the string as an array of machine values (as if it had been read from a file using the fromfile() method).

New in version 3.2: fromstring() is renamed to frombytes() for clarity.

Read n items (as machine values) from the file object f and append them to the end of the array. If less than n items are available, EOFError is raised, but the items that were available are still inserted into the array.

Append items from the list. This is equivalent to for x in list: a.append(x) except that if there is a type error, the array is unchanged.

Extends this array with data from the given unicode string. The array must be a type ‘u’ array; otherwise a ValueError is raised. Use array.frombytes(unicodestring.encode(enc)) to append Unicode data to an array of some other type.

Return the smallest i such that i is the index of the first occurrence of x in the array. The optional arguments start and stop can be specified to search for x within a subsection of the array. Raise ValueError if x is not found.

Changed in version 3.10: Added optional start and stop parameters.

Insert a new item with value x in the array before position i. Negative values are treated as being relative to the end of the array.

Removes the item with the index i from the array and returns it. The optional argument defaults to -1 , so that by default the last item is removed and returned.

Remove the first occurrence of x from the array.

Reverse the order of the items in the array.

Convert the array to an array of machine values and return the bytes representation (the same sequence of bytes that would be written to a file by the tofile() method.)

New in version 3.2: tostring() is renamed to tobytes() for clarity.

Write all items (as machine values) to the file object f.

Convert the array to an ordinary list with the same items.

Convert the array to a unicode string. The array must be a type ‘u’ array; otherwise a ValueError is raised. Use array.tobytes().decode(enc) to obtain a unicode string from an array of some other type.

When an array object is printed or converted to a string, it is represented as array(typecode, initializer) . The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ‘u’ , otherwise it is a list of numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using eval() , so long as the array class has been imported using from array import array . Examples:

array('l') array('u', 'hello \u2641') array('l', [1, 2, 3, 4, 5]) array('d', [1.0, 2.0, 3.14]) 

Packing and unpacking of heterogeneous binary data.

Packing and unpacking of External Data Representation (XDR) data as used in some remote procedure call systems.

The NumPy package defines another array type.

Источник

Вывести все подмассивы с нулевой суммой

Дан целочисленный массив, выведите все подмассивы с нулевой суммой.

Subarrays with zero-sum are

Subarrays with zero-sum are

Обратите внимание, что проблема касается подмассивы которые являются непрерывными, т. е. элементы которых занимают последовательные позиции в массиве.

Подход 1: Использование грубой силы

Наивное решение состоит в том, чтобы рассмотреть все подмассивы и найти их сумму. Если сумма подмассива равна 0, выведите ее. Временная сложность наивного решения равна O(n 3 ) как есть n 2 подмассивы в массиве размером n , и это занимает O(n) времени, чтобы найти сумму его элементов. Мы можем оптимизировать метод для запуска O(n 2 ) время путем вычисления суммы подмассива за постоянное время.

Ниже приведена реализация на C++, Java и Python, основанная на приведенной выше идее:

C++

результат:

Subarray [0…2]
Subarray [0…9]
Subarray [1…3]
Subarray [2…5]
Subarray [3…9]
Subarray [5…7]

Java

результат:

Subarray [0…2]
Subarray [0…9]
Subarray [1…3]
Subarray [2…5]
Subarray [3…9]
Subarray [5…7]

Python

результат:

Sublist (0, 2)
Sublist (0, 9)
Sublist (1, 3)
Sublist (2, 5)
Sublist (3, 9)
Sublist (5, 7)

Подход 2: использование multimap для печати всех подмассивов

Мы можем использовать multimap вывести все подмассивы с нулевой суммой, присутствующие в данном массиве. Идея состоит в том, чтобы создать пустую multimap для хранения конечного индекса всех подмассивов, имеющих заданную сумму. Пройдите по массиву и сохраните сумму элементов, просмотренных до сих пор. Если сумма видна раньше, по крайней мере один подмассив имеет нулевую сумму, которая заканчивается на текущем индексе. Наконец, выведите все такие подмассивы.

Алгоритм может быть реализован следующим образом на C++, Java и Python:

Источник

Разница между подмассивом, подпоследовательностью и подмножеством

Подмассивы представляет собой срез непрерывного массива (т. е. занимает последовательные позиции) и по своей природе поддерживает порядок элементов. Например, подмассивы массива находятся , , , , , а также .

Ниже приведена программа на C, Java и Python для создания всех подмассивов указанного массива:

C

Java

Python

Обратите внимание, что есть именно n×(n+1)/2 подмассивы в массиве размером n . Кроме того, не существует такого понятия, как непрерывный подмассив. Префикс смежный иногда применяется, чтобы сделать контекст более ясным. Таким образом, непрерывный подмассив — это просто другое название подмассива.

2. Подстрока

А подстрока строки s это строка s’ что происходит в s . Подстрока почти аналогична подмассиву, но в контексте строк.

Например, подстроки строки ‘apple’ находятся ‘apple’, ‘appl’, ‘pple’, ‘app’, ‘ppl’, ‘ple’, ‘ap’, ‘pp’, ‘pl’, ‘le’, ‘a’, ‘p’, ‘l’, ‘e’, » . Ниже приведена программа на C++, Java и Python, которая генерирует все непустые подстроки указанной строки:

C++

результат:

't', 'te', 'tec', 'tech', 'techi', 'techie', 'e', 'ec', 'ech', 'echi', 'echie', 'c', 'ch', 'chi', 'chie', 'h', 'hi', 'hie', 'i', 'ie', 'e'

Java

результат:

't', 'te', 'tec', 'tech', 'techi', 'techie', 'e', 'ec', 'ech', 'echi', 'echie', 'c', 'ch', 'chi', 'chie', 'h', 'hi', 'hie', 'i', 'ie', 'e'

Python

результат:

t te tec tech techi techie e ec ech echi echie c ch chi chie h hi hie i ie e

3. Последующие действия

А последующая последовательность последовательность, которая может быть получена из другой последовательности путем удаления некоторых элементов без изменения порядка оставшихся элементов. Например, является подпоследовательностью последовательности полученный после удаления а также .

Люди часто путают подмассив/подстроку и подпоследовательность. Подмассив или подстрока всегда будут непрерывными, но подпоследовательность не обязательно должна быть непрерывной. То есть, подпоследовательности не обязаны занимать последовательные позиции в исходных последовательностях. Но мы можем сказать, что и непрерывная подпоследовательность, и подмассив одинаковы.

Другими словами, подпоследовательность — это обобщение подстроки, или подстрока — это уточнение подпоследовательности. Например, является следствием , но не подстрока, и является одновременно подмассивом и подпоследовательностью.

Обратите внимание, что подпоследовательность может быть в контексте как массивов, так и строк. Генерация всех подпоследовательностей массива/строки эквивалентна создание набора мощности массива/строки. Для заданного множества S , мы можем найти набор мощности, сгенерировав все двоичные числа между 0 а также 2 n -1 , куда n — это размер заданного набора. Этот подход демонстрируется ниже на C++, Java и Python:

Источник

Найти подмассивы с заданной суммой в массиве

Дан целочисленный массив, найти в нем подмассивы с заданной суммой.

Subarrays with the given sum are

Обратите внимание, что проблема конкретно нацелена подмассивы которые являются смежными (т. е. занимают последовательные позиции) и по своей сути поддерживают порядок элементов.

1. Решение грубой силы

Простое решение — рассмотреть все подмассивы и вычислить сумму их элементов. Если сумма подмассива равна заданной сумме, выведите ее. Этот подход демонстрируется ниже на C, Java и Python:

C

Java

результат:

[3, 4]
[3, 4, -7, 1, 3, 3]
[1, 3, 3]
[3, 3, 1]

Python

результат:

[3, 4]
[3, 4, -7, 1, 3, 3]
[1, 3, 3]
[3, 3, 1]

Этот подход требует O(n 3 ) время, когда сумма подмассива вычисляется в O(1) время для каждого из n 2 подмассивы массива размером n , и это занимает O(n) время для печати подмассива.

2. Хеширование

Мы также можем использовать Хеширование найти подмассивы с заданной суммой в массиве с помощью карты списков или multimap для хранения конечного индекса всех подмассивов, имеющих заданную сумму. Идея состоит в том, чтобы пройти по заданному массиву и сохранить сумму элементов, просмотренных до сих пор. При любом индексе i , позволять k быть разницей между суммой элементов, увиденных до сих пор, и заданной суммой. Если ключ k присутствует на карте, хотя бы один подмассив имеет заданную сумму, заканчивающуюся текущим индексом i , и мы печатаем все такие подмассивы.

Ниже приведена реализация вышеуказанного алгоритма на C++, Java и Python:

Источник

Читайте также:  Ispmanager change native php version
Оцените статью