Целочисленное программирование венгерский метод

27. Венгерский метод решения задачи о назначениях

Венгерский алгоритм — алгоритм оптимизации, решающий задачу о назначениях за полиномиальное время (см. исследование операций). Он был разработан и опубликован Харолдом Куном в 1955 году. Автор дал ему имя «венгерский метод» в связи с тем, что алгоритм в значительной степени основан на более ранних работах двух венгерских математиков (Кёнига и Эгервари).

Джеймс Манкрес в 1957 году заметил, что алгоритм является (строго) полиномиальным. С этого времени алгоритм известен также как алгоритм Куна — Манкреса или алгоритм Манкреса решения задачи о назначениях. Временная сложность оригинального алгоритма была , однако Эдмондс и Карп (а также Томидзава независимо от них) показали, что его можно модифицировать так, чтобы достичь времени выполнения . Форд и Фалкерсон распространили метод на общие транспортные задачи. В 2006 году было обнаружено, что Якоби нашёл решение задачи о назначениях в XIX веке и опубликовал его в 1890 году на латыни

Предположим, есть три работника: Иван, Пётр и Андрей. Нужно распределить между ними выполнение трёх видов работ (которые мы назовём A, B, C), каждый работник должен выполнять только одну разновидность работ. Как это сделать так, чтобы потратить наименьшую сумму денег на оплату труда рабочих? Сначала необходимо построить матрицу стоимостей работ.

Венгерский алгоритм, применённый к приведённой выше таблице даст нам требуемое распределение: Иван выполняет работу A, Пётр — работу B, Андрей — работу С

Дана неотрицательная матрица размера n×n, где элемент в i-й строке и j-ом столбце соответствует стоимости выполнения j-ого вида работ i-м работником. Нужно найти такое соответствие работ работникам, чтобы расходы на оплату труда были наименьшими. Если цель состоит в нахождении назначения с наибольшей стоимостью, то решение сводится к решению только что сформулированной задачи путём замены каждой стоимости C на разность между максимальной стоимостью и C.[2]

Читайте также:  Машинно ориентированный язык программирования 9 букв

Алгоритм основан на двух идеях:

если из всех элементов некоей строки или столбца вычесть одно и то же число , общая стоимость уменьшится на , а оптимальное решение не изменится;

если есть решение нулевой стоимости, оно оптимально.

Алгоритм ищет значения, которые надо вычесть из всех элементов каждой строки и каждого столбца (разные для разных строк и столбцов), такие что все элементы матрицы останутся неотрицательными, но появится нулевое решение.

28. Решение задачи коммивояжера методом ветвей и границ

Метод ветвей и границ (англ. branch and bound) — общий алгоритмический метод для нахождения оптимальных решений различных задач оптимизации, особенно дискретной и комбинаторной оптимизации. По существу, метод является вариацией полного перебора с отсевом подмножеств допустимых решений, заведомо не содержащих оптимальных решений.

Метод ветвей и границ был впервые предложен в 1960 году Ленд и Дойг[1] для решения задач целочисленного программирования.

Общая идея метода может быть описана на примере поиска минимума и максимума функции на множестве допустимых значений . Функция и могут быть произвольной природы. Для метода ветвей и границ необходимы две процедуры: ветвление и нахождение оценок (границ).

Процедура ветвления состоит в разбиении области допустимых решений на подобласти меньших размеров. Процедуру можно рекурсивно применять к подобластям. Полученные подобласти образуют дерево, называемое деревом поиска или деревом ветвей и границ. Узлами этого дерева являются построенные подобласти.

Процедура нахождения оценок заключается в поиске верхних и нижних границ для оптимального значения на подобласти допустимых решений.

В основе метода ветвей и границ лежит следующая идея (для задачи минимизации): если нижняя граница для подобласти дерева поиска больше, чем верхняя граница какой-либо ранее просмотренной подобласти , то может быть исключена из дальнейшего рассмотрения (правило отсева). Обычно, минимальную из полученных верхних оценок записывают в глобальную переменную ; любой узел дерева поиска, нижняя граница которого больше значения , может быть исключен из дальнейшего рассмотрения.

Если нижняя граница для узла дерева совпадает с верхней границей, то это значение является минимумом функции и достигается на соответствующей подобласти.

Метод ветвей и границ

Основная статья: Метод ветвей и границ

Можно найти точное решение задачи коммивояжёра, то есть «вручную» вычислить длины всех возможных маршрутов и выбрать маршрут с наименьшей длиной. Однако даже для небольшого количества городов решать задачу таким способом практически невозможно. Для простого варианта, симметричной задачи с городами, существует возможных маршрутов, то есть для 15 городов существует 43 миллиарда маршрутов и для 18 городов уже 177 биллионов. То, как стремительно растет продолжительность вычислений, можно показать на следующем примере. Если бы существовало устройство, находящее решение для 30 городов за час, то для двух дополнительных городов требуется тысячу раз больше времени; то есть, более чем 40 суток.

Задача коммивояжера для трех городов: красная пунктирная плоскость отсекает все недопустимые решения с максимум одним ребром. Все точки в красном политопе удовлетворяют этому неравенству, и единственная допустимая точка это (1, 1, 1).

Методы дискретной оптимизации, в частности ветвей и границ, позволяют находить оптимальные или приблизительные решения для достаточно больших задач.

В геометрической интерпретации, эти методы рассматривают задачу как выпуклый политоп, то есть многомерный многоугольник в -мерном единичном кубе , где равно количеству ребер в графе. Каждое ребро этого единичного куба соответствует маршруту, то есть вектору с элементами 0/1, что удовлетворяет описанным выше линейным неравенствам. Гиперплоскости, описываемые этими неровностями, отсекают такие ребра единичного куба, которые не соответствуют ни одному маршруту.

На рисунке рядом показано применение метода для задачи с тремя узлами. В соответствие трем возможным ребрам между вершинами сопоставляются бинарные переменные и . В этом случае существует лишь один возможный маршрут, а именно тот, что проходит через три вершины. Этот маршрут удовлетворяет неравенству , которое утверждает, что маршрут должен проходить через минимум две вершины. Кроме этого маршрута, что соответствует вектору (1,1,1), неравенству удовлетворяют также все точки в отмеченной красным части этого неравенства. Плоскости, проходящие через красные линии, отсекают все углы, отвечающие несуществующим маршрутам с максимум одним ребром, а именно, ноль-вектор (0, 0, 0), единичные векторы (1, 0, 0), (0, 1, 0) и (0, 0, 1). Сильное неравенство отсечет от единичного куба все, кроме единственной допустимой точки (1, 1, 1). В этом отдельном случае тот же эффект можно получить тремя неравенствами типа (1).

Для определения допустимого ребра с наименьшей длиной следует решить наборы задач линейной оптимизации, отсекающие секущими плоскостями ненужные части единичного куба и попытаться разделить единичный куб на меньшие политопы методом ветвей и границ.

Однако этого метода для быстрого поиска маршрутов обычно недостаточно. Основное преимущество точных методов заключается в том, что имея достаточно времени, они вычисляют кратчайший маршрут. Имея нижнюю границу для оптимальных решений, можно оценить то, насколько отличается найденный маршрут от оптимального. Например, имея нижнюю границу на уровне 100, и после нахождения маршрута длиной 102, оптимальный маршрут может находиться в пределах от 100 до 102. Так называемый интервал оптимальности, или максимальное относительное расстояние между длиной оптимального маршрута и кратчайшим известным маршрутом составит (102—100)/100 = 2 %, то есть длина найденного маршрута 102 максимум на 2 % отличается от оптимальной. Когда длина вычисленного маршрута равна длине предыдущего, считается, что найденное решение является оптимальным. Для поиска маршрутов приемлемой длины точные методы могут комбинироваться с эвристическими.

Метод ветвей и границ для решения задачи коммивояжёра был предложен в 1963 году группой авторов (Дж. Литл, К. Мурти, Д. Суини, К.Кэрол).[1]

Источник

Оцените статью