Состав современной системы программирования

Лекция 7. Понятие о системе программирования

Системы программирования — это комплекс инструментальных программных средств, предназначенный для работы с программами на одном из языков программирования. Системы программирования предоставляют сервисные возможности программистам для разработки их собственных компьютерных программ.

В настоящее время разработка любого системного и прикладного программного обеспечения осуществляется с помощью систем программирования, в состав которых входят

• трансляторы с языков высокого уровня;

• средства редактирования, компоновки и загрузки программ;

• макроассемблеры (машинно-ориентированные языки);

• отладчики машинных программ.

Системы программирования, как правило, включают в себя

• текстовый редактор (Edit), осуществляющий функции записи и редактирования исходного текста программы;

•загрузчик программ (Load), позволяющий выбрать из директория нужный текстовый файл программы;

• запускатель программ (Run), осуществляющий процесс выполнения программы;

• компилятор (Compile), предназначенный для компиляции или интерпретации исходного текста программы в машинный код с диагностикой синтаксических и семантических (логических) ошибок;

• отладчик (Debug), выполняющий сервисные функции по отладке и тестированию программы;

• диспетчер файлов (File), предоставляющий возможность выполнять операции с файлами:сохранение, поиск, уничтожение и т.п.

Ядро системы программирования составляет язык. Существующие языки программирования можно разделить на две группы: процедурные и непроцедурные, рис. 2.9.

Процедурные (или алгоритмические) программы представляют из себя систему предписаний для решения конкретной задачи. Роль компьютера сводится к механическому выполнению этих предписаний.

Процедурные языки разделяют на языки низкого и высокого уровня.

Языки низкого уровня (машинно-ориентированные) позволяют создавать программы из машинных кодов, обычно в шестнадцатиричной форме. С ними трудно работать, но созданные с их помощью высококвалифицированным программистом программы занимают меньше места в памяти и работают быстрее. С помощью этих языков удобнее разрабатывать системные программы, драйверы (программы для управления устройствами компьютера), некоторые другие виды программ.

Рис. 2.9. Общая классификация языков программирования

Программы на языках высокого уровня близки к естественному (английскому)

языку и представляют набор заданных команд.

Перечислим наиболее известные системы программирования.

1. Фортран (FORmula TRANslating system — система трансляции формул); старейший и по сей день активно используемый в решении задач математической ориентации язык.

2. Бейсик (Beginner’s All-purpose Symbolic Instruction Code — универсальный символический код инструкций для начинающих); несмотря на многие недостатки и изобилие плохо совместимых версий — самый популярный по числу пользователей.

3. Алгол (ALGOrithmic Language — алгоритмический язык); сыграл большую роль в теории, но для практического программирования сейчас почти не используется.

4. ПЛ/1 (PL/I Programming Language — язык программирования первый). Многоцелевой язык; сейчас почти не используется.

5. Си (С — «си»); широко используется при создании системного программного обеспечения.

6. Паскаль (Pascal — назван в честь ученого Блеза Паскаля); чрезвычайно популярен как при изучении программирования, так и среди профессионалов. На его базе созданы несколько более мощных языков (Модула, Ада, Дельфи).

7. Кобол (COmmon Business Oriented Language — язык, ориентированный на общий бизнес); в значительной мере вышел из употребления.

8. Дельфи (Delphi) — язык объектно-ориентированного «визуального» программирования; в данный момент чрезвычайно популярен.

9. Джава (Java) — платформенно-независимый язык объектно-ориентированного программирования, чрезвычайно эффективен для создания интерактивных веб-страниц.

Среди непроцедурных языков наиболее известны

2. Пролог (PROgramming in LOGic);

3. Оккам (назван в честь философа У. Оккама).

Широкое распространение среди разработчиков программ, а также при обучении программированию, получили системы программирования «Турбо» (Turbo) фирмы Borland, ядром которых являются трансляторы с языков программирования Бейсик, Паскаль, Си, Пролог и др. Интерфейс Турбо-оболочки для любых систем программирования внешне совершенно одинаков и предоставляет пользователю стандартный набор функций и команд, описанных выше и отображаемых в главном меню системы.

Рассмотрим технологию разработки программ с использованием популярной системы программирования Турбо-Паскаль 7 (оставив знакомство с самим языком до следующей главы).

В подобных интегрированных системах программирования сделана попытка предоставить разработчику программ максимум сервисных возможностей. Помимо основных функций система Турбо-Паскаль 7 позволяет настроить компилятор на работу в трех режимах: обычном режиме MS DOS (Real), защищенном режиме (Protected) и в режиме операционной среды Windows (Windows).

После загрузки системы (файл TURBO. EXE), на экране монитора появляется интерфейсное окно, рис. 2.10.

Рис. 2.10. Вид экрана интегрированной среды Турбо-Паскаля версии 7 (монтаж)

Главное меню системы (верхняя строка экрана) содержит команды, которые позволяют осуществлять следующие виды работ:

File — работа с файлами (сохранение, загрузка, связь с операционной системой);

Edit — работа с текстовым редактором (после загрузки системы по умолчанию текстовый редактор находится в активном состоянии);

Search — поиск и замена фрагментов текста;

Run -запуск программы на выполнение;

Compile — компиляция программы и установка параметров компиляции;

Debug — установка параметров отладки программы;

Tools — инструментальные программные средства (ненавязчивый сервис);

Options -установка опций интегрированной среды;

Help -система помощи и подсказок.

Для начала работы с системой программирования необходимо иметь проект текста программы, который можно набирать на рабочем поле окна системы. Встроенный текстовый редактор прост и максимально приспособлен для набора текстов программ на языке Паскаль. В нем предусмотрена специальная подсветка управляющих структур, команд. Удобна система контекстной помощи (Shift+Fl), которая вызовет подсказку по набираемому текущему тексту программы в любой момент и в любом месте. Впрочем, текст программы можно приготовить в любом текстовом редакторе, хранящем тексты в ASCII-кодах (например, в Лексиконе); необходимо лишь снабдить имя файла расширением .pas.

Если текст (тексты) программы был ранее сохранен на жестком диске или дискете, то он может быть загружен в поле редактирования с помощью пункта меню File.

После окончания формирования текста необходимо откомпилировать программу (пункт меню Compile). Если в программе есть ошибки, то компилятор их укажет. После исправления ошибок можно снова повторить компиляцию.

После удачной компиляции запуск программы осуществляется командой меню Run.

Но на этом этапе чаще всего работа не заканчивается. Сложные алгоритмы требуют тестирования и отладки. Многие программы составляются из отдельных модулей, требуют связи с другими программами и системами и т.д. Для решения всех этих проблем предназначены другие команды системы (Debug, Options и пр.).

Разумеется, программисту, работающему на Паскале, нет нужды самому программировать такие непростые, но часто встречающиеся операции, как вычисление значений математических функций, построение изображений простых геометрических объектов (отрезков прямых, окружностей и т.д.), очистка экрана и множество других. Высокоэффективные, тщательно отлаженные программы таких действий сведены в стандартные модули и надо лишь уметь к ним обратиться. В состав пакета библиотек стандартных модулей входят: Crt работы с экраном, Graph -работы с графикой и другие, такие как Overlay, String, System, Turbo3, WinAPI, WinCrt, WinDos, WinPrn, WinTypes, WinProcs.

Источник

Структура современной системы программирования

Системой программирования будем называть весь комплекс программных средств, предназначенных для кодирования, тестирования и отладки программного обес­печения. Нередко системы программирования взаимосвязаны и с другими тех­ническими средствами, служащими целям создания программного обеспечения на более ранних этапах жизненного цикла (от формулировки требований и ана­лиза до проектирования). Однако рассмотрение таких систем выходит за рамки данного учебного пособия.

Системы программирования в современном мире доминируют на рынке средств разработки. Практически все фирмы-разработчики компиляторов поставляют свои продукты в составе соответствующей системы программирования в комплексе всех прочих технических средств. Отдельные компиляторы являются редкостью и, как правило, служат только узко специализированным целям.

1 Термин «ресурсы» следует признать не слишком удачным, так как этим словом обозна­чаются очень многие понятия, связанные с вычислительными системами (например, ре­сурсы вычислительного процесса). Однако так сложилось, что этот термин применяется при работе со средствами разработки, поэтому придется принять eго. I

2 Наверное, с точки зрения терминологии компиляторы ресурсов правильнее было бы назвать «трансляторы», так как в результате своей работы они обычно порождают не объектный файл, а некий промежуточный код ресурсов. Однако термин «компилятор ресурсов» стал уже общепринятым.

На рис. 15.1 приведена общая структура современной системы программирова­ния. На ней выделены все основные составляющие современной системы про­граммирования и их взаимосвязь. Отдельные составляющие разбиты по группам в соответствии с этапами развития средств разработки. Эти группы отражают все этапы развития от отдельных программных компонентов до цельной систе­мы программирования.

Из рис. 15.1 видно, что современная система программирования — это достаточ­но сложный комплекс различных программно-технических средств. Все они слу­жат цели создания прикладного и системного программного обеспечения. Тенденция такова, что все развитие систем программирования идет в направле­нии неуклонного повышения, их дружественности и сервисных возможностей. Это связано с тем, что на рынке в первую очередь лидируют те системы програм­мирования, которые позволяют существенно снизить трудозатраты, потребные для создания программного обеспечения на этапах жизненного цикла, связанных с кодированием, тестированием и отладкой программ. Показатель снижения трудозатрат в настоящее время считается более существенным, чем показатели, определяющие эффективность результирующей программы, построенной с помощью системы программирования.

В качестве основных тенденций в развитии современных систем программиро­вания следует указать внедрение в них средств разработки на основе так назы­ваемых «языков четвертого поколения» — 4GL (four generation languages), — а также поддержка систем «быстрой разработки программного обеспечения» —RAD (rapid application development).

Языки четвертого поколения — 4GL— представляют собой широкий набор средств, ориентированных на проектирование и разработку программного обеспечения. Они строятся на основе оперирования не синтаксическими структурами языка и описаниями элементов интерфейса, а представляющими их графическими об­разами. На таком уровне проектировать и разрабатывать прикладное программное обеспечение может пользователь, не являющийся квалифицированным программистом, зато имеющий представление о предметной области, на работу в которой ориентирована прикладная программа. Языки четвертого поколения яв­ляются следующим (четвертым по счету) этапом в развитии систем программи­рования.

Описание программы, построенное на основе языков 4GL, транслируется затем в исходный текст и файл описания ресурсов интерфейса, представляющие со­бой обычный текст на соответствующем входном языке высокого уровня. С этим текстом уже может работать профессиональный программист-разработчик — он может корректировать и дополнять его необходимыми функциями. Дальнейший ход создания программного обеспечения идет уже традиционным путем, как это показано на рис. 15.1.

Такой подход позволяет разделить работу проектировщика, ответственного за общую концепцию всего проекта создаваемой системы, дизайнера, отвечающего за внешний вид интерфейса пользователя, и профессионального программис­та, отвечающего непосредственно за создание исходного кода создаваемого про­граммного обеспечения.

В целом языки четвертого поколения решают уже более широкий класс задач, чем традиционные системы программирования. Они составляют часть средств автоматизированного проектирования и разработки программного обеспечения, поддерживающих все этапы жизненного цикла — CASE-систем. Их рассмотре­ние выходит за рамки данного учебного пособия.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Источник

Читайте также:  Язык программирования луа самоучитель
Оцените статью