Симплексный метод решения задач линейного программирования двойственный метод

Решение двойственной задачи линейного программирования

Инструкция . Выберите количество переменных и количество ограничений прямой задачи линейного программирования, нажмите Далее . Полученное решение сохраняется в файле Word и Excel . При этом ограничения типа xi ≥ 0 не учитывайте. Если прямая задача ЛП не имеет решение, но требуется составить двойственную задачу или одна из переменных xi неопределена, то можно использовать этот калькулятор.

Определив обратную матрицу А -1 через алгебраические дополнения, получим:
Как видно из последнего плана симплексной таблицы, обратная матрица A -1 расположена в столбцах дополнительных переменных x4 , x5 , x6 .
Тогда Y = C*A -1 =
Оптимальный план двойственной задачи равен: y1 = 23.75, y2 = 12.5, y3 = 0
Z(Y) = 1100*23.75+120*12.5+8000*0 = 27625
Подставим оптимальный план прямой задачи в систему ограниченной математической модели:
0.1*250 + 0.2*5375 + 0.4*0 = 1100 = 1100
0.05*250 + 0.02*5375 + 0.02*0 = 120 = 120
3*250 + 1*5375 + 2*0 = 6125 < 8000 1-ое ограничение прямой задачи выполняется как равенство. Это означает, что 1-ый ресурс полностью используется в оптимальном плане, является дефицитным и его оценка согласно второй теореме двойственности отлична от нуля (y1>0).
2-ое ограничение прямой задачи выполняется как равенство. Это означает, что 2-ый ресурс полностью используется в оптимальном плане, является дефицитным и его оценка согласно второй теореме двойственности отлична от нуля (y2>0).
3-ое ограничение выполняется как строгое неравенство, т.е. ресурс 3-го вида израсходован не полностью. Значит, этот ресурс не является дефицитным и его оценка в оптимальном плане y3 = 0.
Таким образом, отличную от нуля двойственные оценки имеют лишь те виды ресурсов, которые полностью используются в оптимальном плане. Поэтому двойственные оценки определяют дефицитность ресурсов.
При постановке оптимальных двойственных оценок в систему ограничений двойственной задачи получим:
0.1*23.75 + 0.05*12.5 + 3*0 = 3 = 3
0.2*23.75 + 0.02*12.5 + 1*0 = 5 = 5
0.4*23.75 + 0.02*12.5 + 2*0 = 9.75 > 4
1-ое ограничение двойственной задачи выполняется как равенство. Это означает, что 1-ый ресурс экономически выгодно использовать, а его использование предусмотрено оптимальным планом прямой задачи (x1>0).
2-ое ограничение двойственной задачи выполняется как равенство. Это означает, что 2-ый ресурс экономически выгодно использовать, а его использование предусмотрено оптимальным планом прямой задачи (x2>0).
3-ое ограничение выполняется как строгое неравенство, т.е. ресурс 3-го вида использовать экономически не выгодно. И действительно в оптимальном плане прямой задачи x3 = 0.
Величина двойственной оценки показывает, на сколько возрастает значение целевой функции при увеличении дефицитного ресурса на единицу.
Например, увеличении 1-го ресурса на 1 приведет к получению нового оптимального плана, в котором целевая функция возрастает на 23.75 и станет равной: F(x) = 27625 + 23.75 = 27648.75
Проведем анализ устойчивости оптимального плана и оценим степень влияния изменения ресурсов на значение целевой функции.
Пусть каждое значение параметра целевой функции изменится на ∆ сi. Найдем интервалы, при которых будет экономически выгодно использование ресурсов.
1-ый параметр целевой функции может изменяться в пределах:

Читайте также:  Структурная схема языков программирования

-3.8 ≤ с1 ≤ 1
Таким образом, 1-параметр может быть уменьшен на 3.8 или увеличен на 1
Интервал изменения равен: [3-3.8; 3+1] = [-0.8;4]
Если значение c1 будет лежать в данном интервале, то оптимальный план не изменится. 2-ый параметр целевой функции может изменяться в пределах:

-10 ≤ b2 ≤ 30
Таким образом, 2-ый запас может быть уменьшен на 10 или увеличен на 30
Интервал изменения равен: [120-10; 120+30] = [110;150]
Составим субоптимальные варианты плана с учетом изменений исходных данных модели (таблицы).
Пусть 2-ый ресурс увеличили на 50

Базисные переменные Значение базисных переменных Коэффициент структурных сдвигов k c Произведение k c на (50) Расчет варианта плана
x 2 5375 6.25 312.5 5687.5
x 1 250 -2.5 -125 125
x 6 1875 1.25 62.5 1937.5
F(X) 27625 23.75 1187.5 28812.5
Пусть 1-ый ресурс уменьшили на -5
Базисные переменные Значение базисных переменных Коэффициент структурных сдвигов k c Произведение k c на (-5) Расчет варианта плана
x 2 5375 -12.5 62.5 5437.5
x 1 250 25 -125 125
x 6 1875 -62.5 312.5 2187.5
F(X) 27625 12.5 -62.5 27562.5
Задание : Для исходной задачи составить двойственную. Решить обе задачи симплексным методом или двойственным симплексным методом и по решению каждой из них найти решение другой. Одну из задач решить графическим методом.
F(X) = 3x1 + x2 → min
— 2x1 + x2≥4
2x1 + x2≤8
3x1 + 2x2≥6
Решение.
I этап. Приводим систему к каноническому виду.
II этап. Решаем симплекс-методом.
Примечание: Если задача решается данным калькулятором, то предыдущие два этапа пропускаем, поскольку они автоматически включены в решение.
На втором этапе окончательный вариант симплекс-таблицы имеет вид:
Базис B x1 x2 x3 x4 x5 x6 x7
x5 2 -7 0 -2 0 1 2 -1
x4 4 4 0 1 1 0 -1 0
x2 4 -2 1 -1 0 0 1 0
F(X3) 4 -5 0 -1 0 0 1-M -M

Так как в оптимальном решении отсутствуют искусственные переменные (они равны нулю), то данное решение является допустимым. Записываем оптимальный план:
x1 = 0, x2 = 4, F(X) = 1•4 = 4 Составим двойственную задачу к прямой задаче.
— 2y1 + 2y2 + 3y3≤3
y1 + y2 + 2y3≤1
4y1 + 8y2 + 6y3 → max
y1 ≥ 0, y2 ≤ 0, y3 ≥ 0
Используя последнюю итерацию прямой задачи найдем, оптимальный план двойственной задачи. Из теоремы двойственности следует, что Y = C*A -1 . Составим матрицу A из компонентов векторов, входящих в оптимальный базис.

Читайте также:  Программирование ключа toyota passo

Источник

Пример решения прямой и двойственной задачи симплекс методом

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве b1 = 240, b2 = 200, b3 = 160 единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве a11 = 2 единицы, ресурса второго вида в количестве a21 = 4 единицы, ресурса третьего вида в количестве a31 = 4 единицы. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве a12 = 3, a13 = 6 единицы, ресурса второго вида в количестве a22 = 2, a23 = 4 единицы, ресурса третьего вида в количестве a32 = 6, a33 = 8 единиц. Прибыль от продажи трех групп товаров на 1 тыс. руб. товарооборота составляет соответственно c1 = 4, c2 = 5, c3 = 4 (тыс. руб.). Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.

К прямой задаче планирования товарооборота, решаемой симплекс методом, составить двойственную задачу линейного программирования.
Установить сопряженные пары переменных прямой и двойственной задачи.
Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи, в которой производится оценка ресурсов, затраченных на продажу товаров.

Решение задачи симплекс методом

Пусть x1, x2, x3 — количество реализованных товаров, в тыс. руб., 1, 2, 3 — ей групп, соответственно. Тогда математическая модель задачи имеет вид.

Решаем симплекс методом.
Вводим дополнительные переменные x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, чтобы неравенства преобразовать в равенства.

В качестве базиса возьмем x4 = 240; x5 = 200; x6 = 160.
Данные заносим в симплекс таблицу

Симплекс таблица № 1

\begin</p data-lazy-src=

\begin</p data-lazy-src=

\begin</p data-lazy-src=

A = (A5, A4, A2) =
Основные Дополнительные
x1 x2 x3 x4 x5 x6
y4 y5 y6 y1 y2 y3
Дополнительные Основные

Автор: Олег Одинцов . Опубликовано: 08-12-2011

Источник

Оцените статью