Перевод чисел в Python
В данной статье мы рассмотрим встроенные функции языка программирования Python по переводу чисел в различные системы счисления. А так же напишем универсальную функцию по переводу десятичных чисел в другие системы счисления.
Перевод чисел из десятичной системы счисления
Для перевода числа из десятичной системы счисления в двоичную можно воспользоваться оператором bin(). В качестве аргумента нужно передать значение в виде числа, а оператор вернет строку с двоичным числом. У результата также будет префикс 0b, указывающий на основание системы счисления.
number = 123 result = bin(number) print(result)
Для перевода в восьмеричную систему счисления есть оператор oct(). Он также возвращает строку с восьмеричным числом и префиксом 0o.
number = 123 result = oct(number) print(result)
При переводе в шестнадцатеричную систему счисления воспользуемся оператором hex(). Он вернет строку шестнадцатеричным числом и префиксом 0x
number = 123 result = hex(number) print(result)
Если же вам не нужен префикс у результата перевода, то всегда можно взять срез у полученной строки.
print(bin(123)[2:]) print(oct(123)[2:]) print(hex(123)[2:])
Так же выводить числа в других системах счисления можно используя f-строки и формат вывода. Для этого в строке, через символ : указываем буквы b – для двоичной, o – для восьмеричной и x – для шестнадцатеричной системы счисления.
n = 1984 print(f'Двоичное: ') print(f'Восьмеричное: ') print(f'Шестнадцатеричное: ')
Двоичное: 11111000000 Восьмеричное: 3700 Шестнадцатеричное: 7c0
А теперь напишем универсальную функцию convert_to() по переводу чисел из десятичной системы счисления в систему счисления в любым основанием. Наша функция будет ограничена только наличием символов в переводимой системе счисления.
Данная функция принимает три аргумента, два из которых обязательные. Это десятичное целое число number и основание переводимой системы счисления base. Третий аргумент upper служит для указания регистра вывода строки переведенного числа. По умолчанию он установлен в значение False.
def convert_to(number, base, upper=False): digits = '0123456789abcdefghijklmnopqrstuvwxyz' if base > len(digits): return None result = '' while number > 0: result = digits[number % base] + result number //= base return result.upper() if upper else result
Во второй строке мы задаем переменную digits, содержащую набор символов цифр и букв английского языка. Она нам понадобится для составления символов переведенного числа на основании остатков.
В третьей строке мы проверяем основание переданной системы счисления на его длину. Если основание окажется больше, чем количество символов в нашей строке digits, то мы прекращаем выполнение функции через вызов оператора return и возвращаем None. Это такая своеобразная защита функции от неправильно переданных аргументов. Если мы попробуем перевести число в большую систему счисления по основанию, чем у нас есть символов для его записи, то мы его не сможем записать.
Дальше заведем переменную result для хранения результата работы функции и зададим ей значение в виде пустой строки. Теперь с помощью цикла с условием будем находить остаток от деления числа number на основание base, а также уменьшать number в base раз используя целочисленное деление.
Остаток от деления числа на основание переводимой системы счисления мы будем использовать как индекс для получения символа в строке digits и добавлять его к результату result. Добавлять это значение следует слева, т.к. самый первый остаток является самым правым разрядом. Цикл выполняется до тех пор, пока исходное значение переменной number больше нуля.
После завершения цикла мы вернем результат через вызов return. Для этого воспользуемся тернарным оператором и проверим наш третий аргумент. Если он будет в значении True, то для строки result вызовем строкой метод .upper() который заменит все прописные символы английского языка на строчные. Иначе, вернем результат как есть.
А теперь проверим работу нашей функции. Для этого попробуем перевести числа в 2ю, 8ю, 16ю, 32ю и 64ю системы счисления. Для перевода в 32ю систему счисления мы укажем третий необязательный аргумент upper и зададим ему значение True.
print(convert_to(123, 2)) print(convert_to(123, 8)) print(convert_to(123, 16)) print(convert_to(123, 32, upper=True)) print(convert_to(123, 64))
Перевод чисел в десятичную систему счисления
Для обратного перевода в десятичную систему счисления мы будем использовать оператор int(). Для этого передадим ему два аргумента, первый – это строка с числом в какой-то системе счисления, а второй – это основание системы счисления самого числа. По умолчанию для этого необязательного аргумента стоит значение равное 10.
В качестве самого числа нужно обязательно передать строку. Строка может содержать или само число или число с префиксом системы счисления.
Для перевода из двоичной системы счисления:
number = '11001' result = int(number, 2) print(result)
number = '0b11001' result = int(number, 2) print(result)
Для перевода из восьмеричной системы счисления:
Числа: целые, вещественные, комплексные
Числа в Python 3: целые, вещественные, комплексные. Работа с числами и операции над ними.
Целые числа (int)
Числа в Python 3 ничем не отличаются от обычных чисел. Они поддерживают набор самых обычных математических операций:
x + y | Сложение |
x — y | Вычитание |
x * y | Умножение |
x / y | Деление |
x // y | Получение целой части от деления |
x % y | Остаток от деления |
-x | Смена знака числа |
abs(x) | Модуль числа |
divmod(x, y) | Пара (x // y, x % y) |
x ** y | Возведение в степень |
pow(x, y[, z]) | x y по модулю (если модуль задан) |
Также нужно отметить, что целые числа в python 3, в отличие от многих других языков, поддерживают длинную арифметику (однако, это требует больше памяти).
Над целыми числами также можно производить битовые операции
x | y | Побитовое или |
x ^ y | Побитовое исключающее или |
x & y | Побитовое и |
x | Битовый сдвиг влево |
x >> y | Битовый сдвиг вправо |
~x | Инверсия битов |
Дополнительные методы
int.bit_length() — количество бит, необходимых для представления числа в двоичном виде, без учёта знака и лидирующих нулей.
int.to_bytes(length, byteorder, *, signed=False) - возвращает строку байтов, представляющих это число.
int.from_bytes(bytes, byteorder, *, signed=False) - возвращает число из данной строки байтов.
Те, у кого в школе была информатика, знают, что числа могут быть представлены не только в десятичной системе счисления. К примеру, в компьютере используется двоичный код, и, к примеру, число 19 в двоичной системе счисления будет выглядеть как 10011. Также иногда нужно переводить числа из одной системы счисления в другую. Python для этого предоставляет несколько функций:
- int([object], [основание системы счисления]) — преобразование к целому числу в десятичной системе счисления. По умолчанию система счисления десятичная, но можно задать любое основание от 2 до 36 включительно.
- bin(x) — преобразование целого числа в двоичную строку.
- hex(х) — преобразование целого числа в шестнадцатеричную строку.
- oct(х) — преобразование целого числа в восьмеричную строку.
Вещественные числа поддерживают те же операции, что и целые. Однако (из-за представления чисел в компьютере) вещественные числа неточны, и это может привести к ошибкам:
Для высокой точности используют другие объекты (например Decimal и Fraction)).
Также вещественные числа не поддерживают длинную арифметику:
Простенькие примеры работы с числами:
float.as_integer_ratio() — пара целых чисел, чьё отношение равно этому числу.
float.is_integer() — является ли значение целым числом.
float.hex() — переводит float в hex (шестнадцатеричную систему счисления).
classmethod float.fromhex(s) — float из шестнадцатеричной строки.
Помимо стандартных выражений для работы с числами (а в Python их не так уж и много), в составе Python есть несколько полезных модулей.
Модуль math предоставляет более сложные математические функции.
В Python встроены также и комплексные числа:
: complex() Для работы с комплексными числами используется также модуль cmath.
Для вставки кода на Python в комментарий заключайте его в теги
- Книги о Python
- GUI (графический интерфейс пользователя)
- Курсы Python
- Модули
- Новости мира Python
- NumPy
- Обработка данных
- Основы программирования
- Примеры программ
- Типы данных в Python
- Видео
- Python для Web
- Работа для Python-программистов