Сгенерировать рандомное число python

Python 3: Генерация случайных чисел (модуль random)

Python порождает случайные числа на основе формулы, так что они не на самом деле случайные, а, как говорят, псевдослучайные [1]. Этот способ удобен для большинства приложений (кроме онлайновых казино) [2].

Модуль random позволяет генерировать случайные числа. Прежде чем использовать модуль, необходимо подключить его с помощью инструкции:

random.random

random.random() — возвращает псевдослучайное число от 0.0 до 1.0

random.random() 0.07500815468466127 

random.seed

random.seed() — настраивает генератор случайных чисел на новую последовательность. По умолчанию используется системное время. Если значение параметра будет одиноким, то генерируется одинокое число:

random.seed(20) random.random() 0.9056396761745207 random.random() 0.6862541570267026 random.seed(20) random.random() 0.9056396761745207 random.random() 0.7665092563626442 

random.uniform

random.uniform(, ) — возвращает псевдослучайное вещественное число в диапазоне от до :

random.uniform(0, 20) 15.330185127252884 random.uniform(0, 20) 18.092324756265473 

random.randint

random.randint(, ) — возвращает псевдослучайное целое число в диапазоне от до :

random.randint(1,27) 9 random.randint(1,27) 22 

random.choince

random.choince() — возвращает случайный элемент из любой последовательности (строки, списка, кортежа):

random.choice('Chewbacca') 'h' random.choice([1,2,'a','b']) 2 random.choice([1,2,'a','b']) 'a' 

random.randrange

random.randrange(, , ) — возвращает случайно выбранное число из последовательности.

random.shuffle

random.shuffle() — перемешивает последовательность (изменяется сама последовательность). Поэтому функция не работает для неизменяемых объектов.

List = [1,2,3,4,5,6,7,8,9] List [1, 2, 3, 4, 5, 6, 7, 8, 9] random.shuffle(List) List [6, 7, 1, 9, 5, 8, 3, 2, 4] 

Вероятностные распределения

random.triangular(low, high, mode) — случайное число с плавающей точкой, low ≤ N ≤ high. Mode - распределение.

random.betavariate(alpha, beta) — бета-распределение. alpha>0, beta>0. Возвращает от 0 до 1.

random.expovariate(lambd) — экспоненциальное распределение. lambd равен 1/среднее желаемое. Lambd должен быть отличным от нуля. Возвращаемые значения от 0 до плюс бесконечности, если lambd положительно, и от минус бесконечности до 0, если lambd отрицательный.

random.gammavariate(alpha, beta) — гамма-распределение. Условия на параметры alpha>0 и beta>0.

random.gauss(значение, стандартное отклонение) — распределение Гаусса.

random.lognormvariate(mu, sigma) — логарифм нормального распределения. Если взять натуральный логарифм этого распределения, то вы получите нормальное распределение со средним mu и стандартным отклонением sigma. mu может иметь любое значение, и sigma должна быть больше нуля.

random.normalvariate(mu, sigma) — нормальное распределение. mu — среднее значение, sigma — стандартное отклонение.

random.vonmisesvariate(mu, kappa)mu — средний угол, выраженный в радианах от 0 до 2π, и kappa — параметр концентрации, который должен быть больше или равен нулю. Если каппа равна нулю, это распределение сводится к случайному углу в диапазоне от 0 до 2π.

random.paretovariate(alpha) — распределение Парето.

random.weibullvariate(alpha, beta) — распределение Вейбулла.

Примеры

Генерация произвольного пароля

Хороший пароль должен быть произвольным и состоять минимум из 6 символов, в нём должны быть цифры, строчные и прописные буквы. Приготовить такой пароль можно по следующему рецепту:

import random # Щепотка цифр str1 = '123456789' # Щепотка строчных букв str2 = 'qwertyuiopasdfghjklzxcvbnm' # Щепотка прописных букв. Готовится преобразованием str2 в верхний регистр. str3 = str2.upper() print(str3) # Выведет: 'QWERTYUIOPASDFGHJKLZXCVBNM' # Соединяем все строки в одну str4 = str1+str2+str3 print(str4) # Выведет: '123456789qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM' # Преобразуем получившуюся строку в список ls = list(str4) # Тщательно перемешиваем список random.shuffle(ls) # Извлекаем из списка 12 произвольных значений psw = ''.join([random.choice(ls) for x in range(12)]) # Пароль готов print(psw) # Выведет: '1t9G4YPsQ5L7' 

Этот же скрипт можно записать всего в две строки:

import random print(''.join([random.choice(list('123456789qwertyuiopasdfghjklzxc vbnmQWERTYUIOPASDFGHJKLZXCVBNM')) for x in range(12)])) 

Данная команда является краткой записью цикла for, вместо неё можно было написать так:

import random psw = '' # предварительно создаем переменную psw for x in range(12): psw = psw + random.choice(list('123456789qwertyuiopasdfgh jklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM')) print(psw) # Выведет: Ci7nU6343YGZ 

Данный цикл повторяется 12 раз и на каждом круге добавляет к строке psw произвольно выбранный элемент из списка.

Ссылки

Источник

Модуль random на примерах — Изучение методов генерации случайных данных

В данной статье мы рассмотрим процесс генерации случайных данных и чисел в Python. Для этого будет использован модуль random и некоторые другие доступные модули. В Python модуль random реализует генератор псевдослучайных чисел для различных распределений, включая целые и вещественные числа с плавающей запятой.

Список методов модуля random в Python:

Метод Описание
seed() Инициализация генератора случайных чисел
getstate() Возвращает текущее внутренне состояние (state) генератора случайных чисел
setstate() Восстанавливает внутреннее состояние (state) генератора случайных чисел
getrandbits() Возвращает число, которое представляет собой случайные биты
randrange() Возвращает случайное число в пределах заданного промежутка
randint() Возвращает случайное число в пределах заданного промежутка
choice() Возвращает случайный элемент заданной последовательности
choices() Возвращает список со случайной выборкой из заданной последовательности
shuffle() Берет последовательность и возвращает ее в перемешанном состоянии
sample() Возвращает заданную выборку последовательности
random() Возвращает случайное вещественное число в промежутке от 0 до 1
uniform() Возвращает случайное вещественное число в указанном промежутке
triangular() Возвращает случайное вещественное число в промежутке между двумя заданными параметрами. Также можно использовать параметр mode для уточнения середины между указанными параметрами
betavariate() Возвращает случайное вещественное число в промежутке между 0 и 1, основываясь на Бета-распределении, которое используется в статистике
expovariate() Возвращает случайное вещественное число в промежутке между 0 и 1, или же между 0 и -1 , когда параметр отрицательный. За основу берется Экспоненциальное распределение, которое используется в статистике
gammavariate() Возвращает случайное вещественное число в промежутке между 0 и 1, основываясь на Гамма-распределении, которое используется в статистике
gauss() Возвращает случайное вещественное число в промежутке между 0 и 1, основываясь на Гауссовом распределении, которое используется в теории вероятности
lognormvariate() Возвращает случайное вещественное число в промежутке между 0 и 1, основываясь на Логнормальном распределении, которое используется в теории вероятности
normalvariate() Возвращает случайное вещественное число в промежутке между 0 и 1, основываясь на Нормальном распределении, которое используется в теории вероятности
vonmisesvariate() Возвращает случайное вещественное число в промежутке между 0 и 1, основываясь на распределении фон Мизеса, которое используется в направленной статистике
paretovariate() Возвращает случайное вещественное число в промежутке между 0 и 1, основываясь на распределении Парето, которое используется в теории вероятности
weibullvariate() Возвращает случайное вещественное число в промежутке между 0 и 1, основываясь на распределении Вейбулла, которое используется в статистике

Цели данной статьи

Далее представлен список основных операций, которые будут описаны в руководстве:

  • Генерация случайных чисел для различных распределений, которые включают целые и вещественные числа с плавающей запятой;
  • Случайная выборка нескольких элементов последовательности population ;
  • Функции модуля random;
  • Перемешивание элементов последовательности. Seed в генераторе случайных данных;
  • Генерация случайных строки и паролей;
  • Криптографическое обеспечение безопасности генератора случайных данных при помощи использования модуля secrets. Обеспечение безопасности токенов, ключей безопасности и URL;
  • Способ настройки работы генератора случайных данных;
  • Использование numpy.random для генерации случайных массивов;
  • Использование модуля UUID для генерации уникальных ID.

В статье также даются ссылки на некоторые другие тексты сайта, связанные с рассматриваемой темой.

Как использовать модуль random в Python

Для достижения перечисленных выше задач модуль random будет использовать разнообразные функции. Способы использования данных функций будут описаны в следующих разделах статьи.

Источник

Читайте также:  Java toolkit for firefox
Оцените статью