Read txt python dataframe

How to Read Data from Text File Into Pandas?

The following step-by-step example shows how to load data from a text file into Pandas. We can use:

  • read_csv() function
    • it handles various delimiters, including commas, tabs, and spaces
    • read fixed-width formatted lines into DataFrame

    Let’s cover both cases into examples:

    read_csv — delimited file

    To read a text into Pandas DataFrame we can use method read_csv() and provide the separator:

    import pandas as pd df = pd.read_csv('data.txt', sep=',') 

    Where sep argument specifies the separator. Separator can be continuous — ‘\s+’ .

    Other useful parameters are:

    • header=None — does the file contain headers
    • names=[«a», «b», «c»] — the column names
    • skiprows=[0,1] — skip rows
    • index_col=True — use index from the file

    read_fwf — fixed-width file

    To read data from a fixed-width file in Pandas we can use read_fwf. Suppose we have a file ‘data.txt’ like:

    John 35 123 A Jane D 28 45 E Bob 42 678 D 

    We can see that columns are aligned by position rather than separated by delimiters. Since the columns are separated by fixed widths:

    we can’t use read_csv() with a separator. Instead we will:

    import pandas as pd colspecs = [(0, 7), (7, 9), (13, 17), (17, 18)] df = pd.read_fwf('data.txt', colspecs=colspecs, header=None, names=['name', 'age', 'score', 'class']) df 
    name age score class
    0 John 35 123 A
    1 Jane D 28 45 E
    2 Bob 42 678 D

    Pandas read text file line by line

    To read a text file line by line into a pandas DataFrame we can:

    • create an empty DataFrame
    • create an iterator to read the file line by line
    • iterate over the iterator and append each line to the DataFrame
    • reset the index of the DataFrame
    import pandas as pd df = pd.DataFrame() iterator = pd.read_csv('data.txt', header=None, iterator=True, chunksize=1) for chunk in iterator: df = df.append(chunk) df = df.reset_index(drop=True) 

    Pandas read text file with pattern

    As an alternative we can use list comprehension to read files and filter it.

    Let’s work with the following file:

    John 35 123 A Pattern Jane D 28 45 E Bob 42 678 D End of pattern 

    We can find the numbers of the start and end lines by matching pattern:

    a=[] with open('data.txt',"r") as r: a=r.readlines() a=[x.replace("\n","") for x in a] start = a.index("Pattern") +1 end = a.index("End of pattern") start, end 

    After that we can read the file with read_fwf or read_csv and filter the lines:

    import pandas as pd df = pd.read_fwf('data.txt', colspecs=colspecs, header=None, names=['name', 'age', 'score', 'class']) df = df[start:end] 
    name age score class
    2 Jane D 28 45 E
    3 Bob 42 678 D

    Summary

    We’ve seen three different ways of reading and loading text file into Pandas DataFrame. We covered how to read delimited or fixed-length files with Pandas.

    We also saw how to read text files line by line and how to filter csv or text file by pattern.

    By using DataScientYst — Data Science Simplified, you agree to our Cookie Policy.

    Источник

    How to Load data from txt to DataFrame with pandas?

    In this article, we will discuss multiple methods to load data from a text file to pandas DataFrame. We will try to cover multiple situations as well to take care while loading these text files into DataFrame.

    Table of Contents

    Introduction

    To quickly get started, let’s say we have a text file named “sample.txt”, the contents of the file look like the below.

    Name Designation Team Experience Shubham Data_Scientist Tech 5 Riti Data_Engineer Tech 7 Shanky Program_Manager Tech 2 Shreya Graphic_Designer Design 2 Aadi Backend_Developer Tech 11 Sim Data_Engineer Design 4

    Load txt file to DataFrame using pandas.read_csv() method

    The “read_csv” function from pandas is the most commonly used to read any CSV file. However, it can be used to read any text file as well. We just need to redefine a few attributes of the function to read the text files. Let’s quickly try below to read our “sample.txt” file.

    import pandas as pd # read txt file using read_csv function df = pd.read_csv("sample.txt", sep="\s+") print(df)

    Frequently Asked:

    Name Designation Team Experience 0 Shubham Data_Scientist Tech 5 1 Riti Data_Engineer Tech 7 2 Shanky Program_Manager Tech 2 3 Shreya Graphic_Designer Design 2 4 Aadi Backend_Developer Tech 11 5 Sim Data_Engineer Design 4

    As observed, we have used pandas.read_csv() function with an additional attribute called separator (“sep”). By default, it takes a comma as the separator to read CSV (comma separated) files, while we can change it to tab (“\t”) or spaces (“\s+”) to read other text files.

    In case, we don’t have a header defined in the text file, we can use the header attribute as “None”, otherwise it will by default use the first row as a header.

    import pandas as pd # read txt file using read_csv function # note that we have used skiprows to skip the header df = pd.read_csv("sample.txt", sep="\s+", header=None, skiprows=1) print(df)
    0 1 2 3 0 Shubham Data_Scientist Tech 5 1 Riti Data_Engineer Tech 7 2 Shanky Program_Manager Tech 2 3 Shreya Graphic_Designer Design 2 4 Aadi Backend_Developer Tech 11 5 Sim Data_Engineer Design 4

    Now, to define new column headers while reading the file, we can use the attribute “names” in the function below.

    import pandas as pd # read txt file using read_csv function # adding new column names while reading txt file df = pd.read_csv( "sample.txt", sep="\s+", header=None, skiprows=1, names = ["col1", "col2", "col3", "col4"]) print(df)
    col1 col2 col3 col4 0 Shubham Data_Scientist Tech 5 1 Riti Data_Engineer Tech 7 2 Shanky Program_Manager Tech 2 3 Shreya Graphic_Designer Design 2 4 Aadi Backend_Developer Tech 11 5 Sim Data_Engineer Design 4

    We have the new column names defined while reading the txt file.

    Load txt file to DataFrame using pandas.read_table() method

    The read_table() function from pandas is similar to the read_csv() function. Let’s quickly see a quick example to load the same txt file using the read_table function.

    import pandas as pd # read txt file using read_table function df = pd.read_table("sample.txt", sep="\s+") print(df)
    Name Designation Team Experience 0 Shubham Data_Scientist Tech 5 1 Riti Data_Engineer Tech 7 2 Shanky Program_Manager Tech 2 3 Shreya Graphic_Designer Design 2 4 Aadi Backend_Developer Tech 11 5 Sim Data_Engineer Design 4

    Load txt file to a DataFrame using pandas.read_fwf() method

    There can be multiple challenges while reading the text files. A few common includes cases such as either the column values also contain spaces or there is no common delimiter in the text file.

    Let’s look at the example below, where our sample.txt file where the column “Designation” contains values with spaces between them.

    Name Designation Team Experience Shubham Data Scientist Tech 5 Riti Data Engineer Tech 7 Shanky Program Manager Tech 2 Shreya Graphic Designer Design 2 Aadi Backend Developer Tech 11 Sim Data Engineer Design 4

    In such cases, if we use the read_csv function, it will result in separating that column into multiple columns as shown below.

    import pandas as pd # read txt file using read_csv function df = pd.read_csv("sample.txt", sep="\s+") print(df)
    Name Designation Team Experience Shubham Data Scientist Tech 5 Riti Data Engineer Tech 7 Shanky Program Manager Tech 2 Shreya Graphic Designer Design 2 Aadi Backend Developer Tech 11 Sim Data Engineer Design 4

    This is where, the read_fwf function from pandas comes in handy, which loads the width-formatted text files into pandas DataFrame easily. Let’s quickly try below.

    import pandas as pd # read txt file using read_table function df = pd.read_fwf("sample.txt") print(df)
    Name Designation Team Experience 0 Shubham Data Scientist Tech 5 1 Riti Data Engineer Tech 7 2 Shanky Program Manager Tech 2 3 Shreya Graphic Designer Design 2 4 Aadi Backend Developer Tech 11 5 Sim Data Engineer Design 4

    Here you go, we don’t even need to provide any separator in this case as it works on a fixed width-based separator.

    Summary

    In this article, we have discussed multiple ways to load a text file into DataFrame using pandas. Thanks.

    Share your love

    Leave a Comment Cancel Reply

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Terms of Use

    Disclaimer

    Copyright © 2023 thisPointer

    To provide the best experiences, we and our partners use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us and our partners to process personal data such as browsing behavior or unique IDs on this site and show (non-) personalized ads. Not consenting or withdrawing consent, may adversely affect certain features and functions.

    Click below to consent to the above or make granular choices. Your choices will be applied to this site only. You can change your settings at any time, including withdrawing your consent, by using the toggles on the Cookie Policy, or by clicking on the manage consent button at the bottom of the screen.

    The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.

    The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.

    The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.

    The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.

    Источник

    Как читать текстовый файл с помощью Pandas (включая примеры)

    Как читать текстовый файл с помощью Pandas (включая примеры)

    Чтобы прочитать текстовый файл с пандами в Python, вы можете использовать следующий базовый синтаксис:

    df = pd.read_csv (" data.txt", sep=" ") 

    В этом руководстве представлено несколько примеров использования этой функции на практике.

    Чтение текстового файла с заголовком

    Предположим, у нас есть следующий текстовый файл с именем data.txt и заголовком:

    Чтение текстового файла в Pandas

    Чтобы прочитать этот файл в DataFrame pandas, мы можем использовать следующий синтаксис:

    import pandas as pd #read text file into pandas DataFrame df = pd.read_csv (" data.txt", sep=" ") #display DataFrame print(df) column1 column2 0 1 4 1 3 4 2 2 5 3 7 9 4 9 1 5 6 3 6 4 4 7 5 2 8 4 8 9 6 8 

    Мы можем распечатать класс DataFrame и найти количество строк и столбцов, используя следующий синтаксис:

    #display class of DataFrame print(type(df)) #display number of rows and columns in DataFrame df.shape (10, 2) 

    Мы видим, что df — это DataFrame pandas с 10 строками и 2 столбцами.

    Чтение текстового файла без заголовка

    Предположим, у нас есть следующий текстовый файл с именем data.txt без заголовков:

    Pandas читают текстовый файл без заголовков

    Чтобы прочитать этот файл в DataFrame pandas, мы можем использовать следующий синтаксис:

    #read text file into pandas DataFrame df = pd.read_csv (" data.txt", sep="", header= None ) #display DataFrame print(df) 0 1 0 1 4 1 3 4 2 2 5 3 7 9 4 9 1 5 6 3 6 4 4 7 5 2 8 4 8 9 6 8 

    Поскольку в текстовом файле не было заголовков, Pandas просто назвали столбцы 0 и 1 .

    Прочитайте текстовый файл без заголовка и укажите имена столбцов

    При желании мы можем присвоить имена столбцам при импорте текстового файла с помощью аргумента имен :

    #read text file into pandas DataFrame and specify column names df = pd.read_csv (" data.txt", sep="", header= None, names=[" A", " B "] ) #display DataFrame print(df) A B 0 1 4 1 3 4 2 2 5 3 7 9 4 9 1 5 6 3 6 4 4 7 5 2 8 4 8 9 6 8 

    Источник

    Читайте также:  Php number format online
Оцените статью