- How to print entire DataFrame in 10 different formats [Practical Examples]
- Different methods to display entire DataFrame in pandas
- Create pandas DataFrame with example data
- 1. Print entire DataFrame using set_option() method
- 2. Print entire DataFrame with or without index
- 3. Print entire DataFrame in Markdown format
- 4. Print entire DataFrame in psql format
- 5. Print entire DataFrame in plain-text format
- 6. Print entire DataFrame in RST format
- 7. Print entire DataFrame in github format
- 8. Print entire DataFrame in pretty format
- 9. Print entire DataFrame in tsv format
- 10. Print entire DataFrame in HTML format
- Summary
- References
How to print entire DataFrame in 10 different formats [Practical Examples]
Different methods to display entire DataFrame in pandas
In this tutorial we will discuss how to display the entire DataFrame in Pandas using the following methods:
- Using set_option() method
- Display with or without index
- Display in Markdown format
- Display in psql format
- Display in plain-text format
- Display in RST format
- Display in github format
- Display in pretty format
- Display in tsv format
- Display in HTML format
Create pandas DataFrame with example data
DataFrame is a data structure used to store the data in two dimensional format. It is similar to table that stores the data in rows and columns. Rows represents the records/ tuples and columns refers to the attributes.
We can create the DataFrame by using pandas.DataFrame() method.
pandas.DataFrame(input_data,columns,index)
It will take mainly three parameters
- input_data is represents a list of data
- columns represent the columns names for the data
- index represent the row numbers/values
We can also create a DataFrame using dictionary by skipping columns and indices.
Example: Python Program to create a dataframe for market data from a dictionary of food items by specifying the column names.
# import the module import pandas # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # display the dataframe print(dataframe)
id name cost quantity item-1 foo-23 ground-nut oil 567.00 1 item-2 foo-13 almonds 562.56 2 item-3 foo-02 flour 67.00 3 item-4 foo-31 cereals 76.09 2
1. Print entire DataFrame using set_option() method
Here we are going to display the entire dataframe
with this method, we can display n number of rows and columns.
# display all the rows pandas.set_option('display.max_rows', None) # display all the columns pandas.set_option('display.max_columns', None) # set width - 100 pandas.set_option('display.width', 100) # set column header - left pandas.set_option('display.colheader_justify', 'left') # set precision - 5 pandas.set_option('display.precision', 5)
# import the module import pandas # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # display all the rows pandas.set_option('display.max_rows', None) # display all the columns pandas.set_option('display.max_columns', None) # set width - 100 pandas.set_option('display.width', 100) # set column header - left pandas.set_option('display.colheader_justify', 'left') # set precision - 5 pandas.set_option('display.precision', 5) # display the dataframe print(dataframe)
id name cost quantity item-1 foo-23 ground-nut oil 567.00 1 item-2 foo-13 almonds 562.56 2 item-3 foo-02 flour 67.00 3 item-4 foo-31 cereals 76.09 2
2. Print entire DataFrame with or without index
Here we are going to display the entire dataframe.
With this method, we can display n number of rows and columns with and with out index .
dataframe.to_string(index=False) dataframe.to_string(index=True)
# import the module import pandas # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # display the dataframe with out index print("Pandas DataFrame without index:\n", dataframe.to_string(index=False)) # display the dataframe with index print("Pandas DataFrame with index:\n", dataframe.to_string(index=True))
Pandas DataFrame without index: id name cost quantity foo-23 ground-nut oil 567.00 1 foo-13 almonds 562.56 2 foo-02 flour 67.00 3 foo-31 cereals 76.09 2 Pandas DataFrame with index: id name cost quantity item-1 foo-23 ground-nut oil 567.00 1 item-2 foo-13 almonds 562.56 2 item-3 foo-02 flour 67.00 3 item-4 foo-31 cereals 76.09 2
3. Print entire DataFrame in Markdown format
Here we are going to display in markdown format
# import the module import pandas # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # dispay in mark down print(dataframe.to_markdown())
| | id | name | cost | quantity | |:-------|:-------|:---------------|-------:|-----------:| | item-1 | foo-23 | ground-nut oil | 567 | 1 | | item-2 | foo-13 | almonds | 562.56 | 2 | | item-3 | foo-02 | flour | 67 | 3 | | item-4 | foo-31 | cereals | 76.09 | 2 |
4. Print entire DataFrame in psql format
Here we are going to display the entire dataframe in psql format.
This is a format available in tabulate package. so we need to install this package.
Install tabulate using pip:
Syntax for this format:
tabulate(dataframe, headers='keys', tablefmt='psql')
where, dataframe is the input dataframe
Example: Python program to display the entire dataframe in psql format
# import the module import pandas from tabulate import tabulate # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # dispay the entire dataframe in psql format print(tabulate(dataframe, headers='keys', tablefmt='psql'))
+--------+--------+----------------+--------+------------+ | | id | name | cost | quantity | |--------+--------+----------------+--------+------------| | item-1 | foo-23 | ground-nut oil | 567 | 1 | | item-2 | foo-13 | almonds | 562.56 | 2 | | item-3 | foo-02 | flour | 67 | 3 | | item-4 | foo-31 | cereals | 76.09 | 2 | +--------+--------+----------------+--------+------------+
5. Print entire DataFrame in plain-text format
Here we are going to display the entire dataframe in plain-text format.
This is a format available in tabulate package. so we need to install this package.
Install tabulate using pip:
Syntax for this format:
tabulate(dataframe, headers='keys', tablefmt='plain-text')
where, dataframe is the input dataframe
Example: Python program to display the entire dataframe in plain-text format
# import the module import pandas from tabulate import tabulate # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # dispay the entire dataframe in plain-text format print(tabulate(dataframe, headers='keys', tablefmt='plain-text'))
id name cost quantity ------ ------ -------------- ------ ---------- item-1 foo-23 ground-nut oil 567 1 item-2 foo-13 almonds 562.56 2 item-3 foo-02 flour 67 3 item-4 foo-31 cereals 76.09 2
6. Print entire DataFrame in RST format
Here we are going to display the entire dataframe in RST format. RST stands for restructured text .
This is a format available in tabulate package. so we need to install this package.
Install tabulate using pip:
Syntax for this format:
tabulate(dataframe, headers='keys', tablefmt='RST')
where, dataframe is the input dataframe
Example: Python program to display the entire dataframe in RST format
# import the module import pandas from tabulate import tabulate # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # dispay the entire dataframe in RST format print(tabulate(dataframe, headers='keys', tablefmt='RST'))
id name cost quantity ------ ------ -------------- ------ ---------- item-1 foo-23 ground-nut oil 567 1 item-2 foo-13 almonds 562.56 2 item-3 foo-02 flour 67 3 item-4 foo-31 cereals 76.09 2
7. Print entire DataFrame in github format
Here we are going to display the entire dataframe in github format.
This is a format available in tabulate package. so we need to install this package.
Install tabulate using pip:
Syntax for this format:
tabulate(dataframe, headers='keys', tablefmt='github ')
where, dataframe is the input dataframe
Example: Python program to display the entire dataframe in github format
# import the module import pandas from tabulate import tabulate # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # dispay the entire dataframe in github format print(tabulate(dataframe, headers='keys', tablefmt='github'))
| | id | name | cost | quantity | |--------|--------|----------------|--------|------------| | item-1 | foo-23 | ground-nut oil | 567 | 1 | | item-2 | foo-13 | almonds | 562.56 | 2 | | item-3 | foo-02 | flour | 67 | 3 | | item-4 | foo-31 | cereals | 76.09 | 2 |
8. Print entire DataFrame in pretty format
Here we are going to display the entire dataframe in pretty format.
This is a format available in tabulate package. so we need to install this package.
Install tabulate using pip:
Syntax for this format:
tabulate(dataframe, headers='keys', tablefmt='pretty')
where, dataframe is the input dataframe
Example: Python program to display the entire dataframe in pretty format
# import the module import pandas from tabulate import tabulate # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # dispay the entire dataframe in pretty format print(tabulate(dataframe, headers='keys', tablefmt='pretty'))
+--------+--------+----------------+--------+----------+ | | id | name | cost | quantity | +--------+--------+----------------+--------+----------+ | item-1 | foo-23 | ground-nut oil | 567.0 | 1 | | item-2 | foo-13 | almonds | 562.56 | 2 | | item-3 | foo-02 | flour | 67.0 | 3 | | item-4 | foo-31 | cereals | 76.09 | 2 | +--------+--------+----------------+--------+----------+
9. Print entire DataFrame in tsv format
Here we are going to display the entire dataframe in tab separated value format.
This is a format available in tabulate package. so we need to install this package.
Install tabulate using pip:
Syntax for this format:
tabulate(dataframe, headers='keys', tablefmt='tab')
where, dataframe is the input dataframe
Example: Python program to display the entire dataframe in tab format
# import the module import pandas from tabulate import tabulate # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # dispay the entire dataframe in tab format print(tabulate(dataframe, headers='keys', tablefmt='tab'))
id name cost quantity ------ ------ -------------- ------ ---------- item-1 foo-23 ground-nut oil 567 1 item-2 foo-13 almonds 562.56 2 item-3 foo-02 flour 67 3 item-4 foo-31 cereals 76.09 2
10. Print entire DataFrame in HTML format
Here we are going to display the entire dataframe in HTML (Hyper text markup language) format.
This is a format available in tabulate package. so we need to install this package.
Install tabulate using pip:
Syntax for this format:
tabulate(dataframe, headers='keys', tablefmt='HTML')
where, dataframe is the input dataframe
Example: Python program to display the entire dataframe in HTML format
# import the module import pandas from tabulate import tabulate # consider the food data food_input= <'id':['foo-23','foo-13','foo-02','foo-31'], 'name':['ground-nut oil','almonds','flour','cereals'], 'cost':[567.00,562.56,67.00,76.09], 'quantity':[1,2,3,2]># pass this food to the dataframe by specifying rows dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) # dispay the entire dataframe in HTML format print(tabulate(dataframe, headers='keys', tablefmt='HTML'))
id name cost quantity ------ ------ -------------- ------ ---------- item-1 foo-23 ground-nut oil 567 1 item-2 foo-13 almonds 562.56 2 item-3 foo-02 flour 67 3 item-4 foo-31 cereals 76.09 2
Summary
In this article we discussed how to print entire dataframe in following formats:
- Markdown format
- psql format
- plain-text format
- RST format
- github format
- pretty format
- tsv format
- HTML format
References
Didn’t find what you were looking for? Perform a quick search across GoLinuxCloud
If my articles on GoLinuxCloud has helped you, kindly consider buying me a coffee as a token of appreciation.
For any other feedbacks or questions you can either use the comments section or contact me form.
Thank You for your support!!