Random sampling ( numpy.random )#
The numpy.random module implements pseudo-random number generators (PRNGs or RNGs, for short) with the ability to draw samples from a variety of probability distributions. In general, users will create a Generator instance with default_rng and call the various methods on it to obtain samples from different distributions.
>>> import numpy as np >>> rng = np.random.default_rng() # Generate one random float uniformly distributed over the range [0, 1) >>> rng.random() 0.06369197489564249 # may vary # Generate an array of 10 numbers according to a unit Gaussian distribution. >>> rng.standard_normal(10) array([-0.31018314, -1.8922078 , -0.3628523 , -0.63526532, 0.43181166, # may vary 0.51640373, 1.25693945, 0.07779185, 0.84090247, -2.13406828]) # Generate an array of 5 integers uniformly over the range [0, 10). >>> rng.integers(low=0, high=10, size=5) array([8, 7, 6, 2, 0]) # may vary
Our RNGs are deterministic sequences and can be reproduced by specifying a seed integer to derive its initial state. By default, with no seed provided, default_rng will create seed the RNG from nondeterministic data from the operating system and therefore generate different numbers each time. The pseudo-random sequences will be independent for all practical purposes, at least those purposes for which our pseudo-randomness was good for in the first place.
>>> rng1 = np.random.default_rng() >>> rng1.random() 0.6596288841243357 # may vary >>> rng2 = np.random.default_rng() >>> rng2.random() 0.11885628817151628 # may vary
The pseudo-random number generators implemented in this module are designed for statistical modeling and simulation. They are not suitable for security or cryptographic purposes. See the secrets module from the standard library for such use cases.
Seeds should be large positive integers. default_rng can take positive integers of any size. We recommend using very large, unique numbers to ensure that your seed is different from anyone else’s. This is good practice to ensure that your results are statistically independent from theirs unless you are intentionally trying to reproduce their result. A convenient way to get such a seed number is to use secrets.randbits to get an arbitrary 128-bit integer.
>>> import secrets >>> import numpy as np >>> secrets.randbits(128) 122807528840384100672342137672332424406 # may vary >>> rng1 = np.random.default_rng(122807528840384100672342137672332424406) >>> rng1.random() 0.5363922081269535 >>> rng2 = np.random.default_rng(122807528840384100672342137672332424406) >>> rng2.random() 0.5363922081269535
See the documentation on default_rng and SeedSequence for more advanced options for controlling the seed in specialized scenarios.
Generator and its associated infrastructure was introduced in NumPy version 1.17.0. There is still a lot of code that uses the older RandomState and the functions in numpy.random . While there are no plans to remove them at this time, we do recommend transitioning to Generator as you can. The algorithms are faster, more flexible, and will receive more improvements in the future. For the most part, Generator can be used as a replacement for RandomState . See Legacy Random Generation for information on the legacy infrastructure, What’s New or Different for information on transitioning, and NEP 19 for some of the reasoning for the transition.
Design#
Users primarily interact with Generator instances. Each Generator instance owns a BitGenerator instance that implements the core RNG algorithm. The BitGenerator has a limited set of responsibilities. It manages state and provides functions to produce random doubles and random unsigned 32- and 64-bit values.
The Generator takes the bit generator-provided stream and transforms them into more useful distributions, e.g., simulated normal random values. This structure allows alternative bit generators to be used with little code duplication.
NumPy implements several different BitGenerator classes implementing different RNG algorithms. default_rng currently uses PCG64 as the default BitGenerator . It has better statistical properties and performance than the MT19937 algorithm used in the legacy RandomState . See Bit Generators for more details on the supported BitGenerators.
default_rng and BitGenerators delegate the conversion of seeds into RNG states to SeedSequence internally. SeedSequence implements a sophisticated algorithm that intermediates between the user’s input and the internal implementation details of each BitGenerator algorithm, each of which can require different amounts of bits for its state. Importantly, it lets you use arbitrary-sized integers and arbitrary sequences of such integers to mix together into the RNG state. This is a useful primitive for constructing a flexible pattern for parallel RNG streams .
For backward compatibility, we still maintain the legacy RandomState class. It continues to use the MT19937 algorithm by default, and old seeds continue to reproduce the same results. The convenience Functions in numpy.random are still aliases to the methods on a single global RandomState instance. See Legacy Random Generation for the complete details. See What’s New or Different for a detailed comparison between Generator and RandomState .
Parallel Generation#
The included generators can be used in parallel, distributed applications in a number of ways:
Users with a very large amount of parallelism will want to consult Upgrading PCG64 with PCG64DXSM .
Concepts#
Features#
- Parallel Applications
- SeedSequence spawning
- Sequence of Integer Seeds
- Independent Streams
- Jumping the BitGenerator state
- Recommendation
- Timings
- Performance on different Operating Systems
- Numba
- Cython
- CFFI
- New Bit Generators
- Examples
Original Source of the Generator and BitGenerators#
This package was developed independently of NumPy and was integrated in version 1.17.0. The original repo is at bashtage/randomgen.
numpy.random.randint#
Return random integers from low (inclusive) to high (exclusive).
Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval [low, high). If high is None (the default), then results are from [0, low).
New code should use the integers method of a Generator instance instead; please see the Quick Start .
Lowest (signed) integers to be drawn from the distribution (unless high=None , in which case this parameter is one above the highest such integer).
high int or array-like of ints, optional
If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if high=None ). If array-like, must contain integer values
size int or tuple of ints, optional
Output shape. If the given shape is, e.g., (m, n, k) , then m * n * k samples are drawn. Default is None, in which case a single value is returned.
dtype dtype, optional
Desired dtype of the result. Byteorder must be native. The default value is int.
size -shaped array of random integers from the appropriate distribution, or a single such random int if size not provided.
similar to randint , only for the closed interval [low, high], and 1 is the lowest value if high is omitted.
which should be used for new code.
>>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Generate a 2 x 4 array of ints between 0 and 4, inclusive:
>>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], # random [3, 2, 2, 0]])
Generate a 1 x 3 array with 3 different upper bounds
>>> np.random.randint(1, [3, 5, 10]) array([2, 2, 9]) # random
Generate a 1 by 3 array with 3 different lower bounds
>>> np.random.randint([1, 5, 7], 10) array([9, 8, 7]) # random
Generate a 2 by 4 array using broadcasting with dtype of uint8
>>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], # random [ 1, 16, 9, 12]], dtype=uint8)
numpy.random.randint#
Return random integers from low (inclusive) to high (exclusive).
Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval [low, high). If high is None (the default), then results are from [0, low).
New code should use the integers method of a Generator instance instead; please see the Quick Start .
Lowest (signed) integers to be drawn from the distribution (unless high=None , in which case this parameter is one above the highest such integer).
high int or array-like of ints, optional
If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if high=None ). If array-like, must contain integer values
size int or tuple of ints, optional
Output shape. If the given shape is, e.g., (m, n, k) , then m * n * k samples are drawn. Default is None, in which case a single value is returned.
dtype dtype, optional
Desired dtype of the result. Byteorder must be native. The default value is int.
size -shaped array of random integers from the appropriate distribution, or a single such random int if size not provided.
similar to randint , only for the closed interval [low, high], and 1 is the lowest value if high is omitted.
which should be used for new code.
>>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Generate a 2 x 4 array of ints between 0 and 4, inclusive:
>>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], # random [3, 2, 2, 0]])
Generate a 1 x 3 array with 3 different upper bounds
>>> np.random.randint(1, [3, 5, 10]) array([2, 2, 9]) # random
Generate a 1 by 3 array with 3 different lower bounds
>>> np.random.randint([1, 5, 7], 10) array([9, 8, 7]) # random
Generate a 2 by 4 array using broadcasting with dtype of uint8
>>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], # random [ 1, 16, 9, 12]], dtype=uint8)
numpy.random.randint#
Return random integers from low (inclusive) to high (exclusive).
Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval [low, high). If high is None (the default), then results are from [0, low).
New code should use the integers method of a Generator instance instead; please see the Quick Start .
Lowest (signed) integers to be drawn from the distribution (unless high=None , in which case this parameter is one above the highest such integer).
high int or array-like of ints, optional
If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if high=None ). If array-like, must contain integer values
size int or tuple of ints, optional
Output shape. If the given shape is, e.g., (m, n, k) , then m * n * k samples are drawn. Default is None, in which case a single value is returned.
dtype dtype, optional
Desired dtype of the result. Byteorder must be native. The default value is int.
size -shaped array of random integers from the appropriate distribution, or a single such random int if size not provided.
similar to randint , only for the closed interval [low, high], and 1 is the lowest value if high is omitted.
which should be used for new code.
>>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Generate a 2 x 4 array of ints between 0 and 4, inclusive:
>>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], # random [3, 2, 2, 0]])
Generate a 1 x 3 array with 3 different upper bounds
>>> np.random.randint(1, [3, 5, 10]) array([2, 2, 9]) # random
Generate a 1 by 3 array with 3 different lower bounds
>>> np.random.randint([1, 5, 7], 10) array([9, 8, 7]) # random
Generate a 2 by 4 array using broadcasting with dtype of uint8
>>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], # random [ 1, 16, 9, 12]], dtype=uint8)