Python numpy array methods

NumPy, часть 2: базовые операции над массивами

Python 3 логотип

Здравствуйте! Я продолжаю работу над пособием по python-библиотеке NumPy.

В прошлой части мы научились создавать массивы и их печатать. Однако это не имеет смысла, если с ними ничего нельзя делать.

Сегодня мы познакомимся с операциями над массивами.

Базовые операции

Математические операции над массивами выполняются поэлементно. Создается новый массив, который заполняется результатами действия оператора.

       :1: RuntimeWarning: divide by zero encountered in true_divide    

Для этого, естественно, массивы должны быть одинаковых размеров.

Также можно производить математические операции между массивом и числом. В этом случае к каждому элементу прибавляется (или что вы там делаете) это число.

NumPy также предоставляет множество математических операций для обработки массивов:

Полный список можно посмотреть здесь.

Многие унарные операции, такие как, например, вычисление суммы всех элементов массива, представлены также и в виде методов класса ndarray.

 

Индексы, срезы, итерации

Одномерные массивы осуществляют операции индексирования, срезов и итераций очень схожим образом с обычными списками и другими последовательностями Python (разве что удалять с помощью срезов нельзя).

           File  У многомерных массивов на каждую ось приходится один индекс. Индексы передаются в виде последовательности чисел, разделенных запятыми (то бишь, кортежами):

Когда индексов меньше, чем осей, отсутствующие индексы предполагаются дополненными с помощью срезов:

b[i] можно читать как b[i, ]. В NumPy это также может быть записано с помощью точек, как b[i, . ].

Например, если x имеет ранг 5 (то есть у него 5 осей), тогда

  • x[1, 2, . ] эквивалентно x[1, 2, :, :, :],
  • x[. , 3] то же самое, что x[:, :, :, :, 3] и
  • x[4, . , 5, :] это x[4, :, :, 5, :].

Итерирование многомерных массивов начинается с первой оси:

Однако, если нужно перебрать поэлементно весь массив, как если бы он был одномерным, для этого можно использовать атрибут flat:

Как уже говорилось, у массива есть форма (shape), определяемая числом элементов вдоль каждой оси:

Форма массива может быть изменена с помощью различных команд:

Порядок элементов в массиве в результате функции ravel() соответствует обычному "C-стилю", то есть, чем правее индекс, тем он "быстрее изменяется": за элементом a[0,0] следует a[0,1]. Если одна форма массива была изменена на другую, массив переформировывается также в "C-стиле". Функции ravel() и reshape() также могут работать (при использовании дополнительного аргумента) в FORTRAN-стиле, в котором быстрее изменяется более левый индекс.

Метод reshape() возвращает ее аргумент с измененной формой, в то время как метод resize() изменяет сам массив:

Если при операции такой перестройки один из аргументов задается как -1, то он автоматически рассчитывается в соответствии с остальными заданными:

Объединение массивов

Несколько массивов могут быть объединены вместе вдоль разных осей с помощью функций hstack и vstack.

hstack() объединяет массивы по первым осям, vstack() — по последним:

Функция column_stack() объединяет одномерные массивы в качестве столбцов двумерного массива:

Аналогично для строк имеется функция row_stack().

Разбиение массива

Используя hsplit() вы можете разбить массив вдоль горизонтальной оси, указав либо число возвращаемых массивов одинаковой формы, либо номера столбцов, после которых массив разрезается "ножницами":

Функция vsplit() разбивает массив вдоль вертикальной оси, а array_split() позволяет указать оси, вдоль которых произойдет разбиение.

Копии и представления

При работе с массивами, их данные иногда необходимо копировать в другой массив, а иногда нет. Это часто является источником путаницы. Возможно 3 случая:

Вообще никаких копий

Простое присваивание не создает ни копии массива, ни копии его данных:

Python передает изменяемые объекты как ссылки, поэтому вызовы функций также не создают копий.

Представление или поверхностная копия

Разные объекты массивов могут использовать одни и те же данные. Метод view() создает новый объект массива, являющийся представлением тех же данных.

Срез массива это представление:

Глубокая копия

Метод copy() создаст настоящую копию массива и его данных:

Для вставки кода на Python в комментарий заключайте его в теги

  • Книги о Python
  • GUI (графический интерфейс пользователя)
  • Курсы Python
  • Модули
  • Новости мира Python
  • NumPy
  • Обработка данных
  • Основы программирования
  • Примеры программ
  • Типы данных в Python
  • Видео
  • Python для Web
  • Работа для Python-программистов

Источник

Array objects#

NumPy provides an N-dimensional array type, the ndarray , which describes a collection of “items” of the same type. The items can be indexed using for example N integers.

All ndarrays are homogeneous : every item takes up the same size block of memory, and all blocks are interpreted in exactly the same way. How each item in the array is to be interpreted is specified by a separate data-type object , one of which is associated with every array. In addition to basic types (integers, floats, etc.), the data type objects can also represent data structures.

An item extracted from an array, e.g., by indexing, is represented by a Python object whose type is one of the array scalar types built in NumPy. The array scalars allow easy manipulation of also more complicated arrangements of data.

../_images/threefundamental.png

Оцените статью