Python копирование части массива

Срезы в Python

К вашему вниманию гайд по слайсингу (AKA суши-оператор, слайс, срез)! Наверно, все пишущие на питоне знают о синтаксисе вырезания частей последовательности — s[a:b] . Сейчас же мы рассмотрим как самые очевидные, так и менее известные факты об операции получения среза.

(Но прежде чем начнём, нужно уточнить, что в Python как и во многих других языках последний элемент не включается в срезы и диапазоны, что соответствует индексации с нуля. seq[начало:конец:шаг] (Для вычисления данного выражения Python вызывает seq.__getitem__ ) — берёт срез от НАЧАЛО, до КОНЕЦ (не включая его), с шагом ШАГ. По умолчанию НАЧАЛО = 0, КОНЕЦ = длине объекта, ШАГ = 1. Соответственно, какие-нибудь, а возможно и все ( seq[:], поговорим об этом позже ) параметры могут быть опущены).

Получение по срезу

>>> some_str = "Python" >>> some_str[:1] # Задаём конечным индексом 1, а т.к. конец не включается, мы получим первый элемент последовательности ('P'). 'P' >>> PYTH = slice(0, 4) # Вместо того чтоб загромождать код вшитыми диапазонами, мы можем проименовать их (например для упрощения разбора накладной). >>> some_str[PYTH] 'Pyth' >>> some_str[::2] # Шагаем через букву. 'Pto'

Немного о NumPy

Оператор [] может принимать несколько индексов или срезов, разделённых запятыми a[m:n, k:l] . В основном это используется в NumPy для получения двумерного среза и a[i, j] для получения одного элемента двумерного массива. Соответственно для вычисления a[i, j] Python вызывает a.__getitem__((i, j)) . Кстати, т.к. » . » (единственный экземпляр класса ellipsis) распознаётся как лексема, то мы его можем использовать так же и в срезах. Применение этому нашлось в том же NumPy для сокращённого создания среза двумерного массива. Детальнее — https://scipy.github.io/old-wiki/pages/Tentative_NumPy_Tutorial.

Читайте также:  Python структура хранения данных

Удаление по срезу

Так же мы можем удалять элементы последовательности по срезу с учётом того, что она поддерживает удаление элементов (изменяема))). Приведу пример с рантайм классом SupportsDeletion .

>>> import typing >>> @typing.runtime_checkable >>> class SupportsDeletion(typing.Protocol): >>> def __delitem__(self, key: typing.Any) -> typing.Any: >>> . >>> for builtin_type in (list, dict, str, tuple): >>> print(builtin_type.__name__, "->", isinstance(builtin_type, SupportsDeletion)) list -> True dict -> True str -> False tuple -> False
>>> seq = [1, 2, 3, 4] >>> del seq[:3] # Удаляем первых три элемента последовательности. >>> seq [4]

Лайфхаки 🙂

№1 Можно перевернуть последовательность, если запросить срез seq[::-1]

>>> seq = (1, 2, 3, 4, 5, 6) >>> seq[::-1] (6, 5, 4, 3, 2, 1)

№2 Как удалить все элементы списка с помощью слайса, не разрушая сам обьект-список? (Разумеется, тот же результат можно получить вызвав метод .clear() у списка, но мы же сейчас про слайсы говорим + его нет во второй версии питона).

>>> seq = [1, 2, 3, 4, 5, 6] >>> id(seq) 2071031395200 >>> del seq[:] >>> id(seq) 2071031395200 >>> seq []

№3 Помимо очистки списков, нарезку также можно использовать для замены всех элементов списка, не создавая новый объект-список. Это отличная сокращённая запись для очистки списка и затем повторного его заполнения вручную:

>>> seq = [1, 2, 3, 4, 5, 6, 7] >>> original_list = seq >>> seq[:] = [1, 2, 3] >>> seq [1, 2, 3] >>> original_list [1, 2, 3] >>> original_list is seq True

Приведённый выше пример кода заменил все элементы в seq , но не уничтожил и воссоздал список как таковой. По этой причине старые ссылки на оригинальный объект-список по-прежнему действительны.

Читайте также:  Html input type number style

№4 Создание мелких копий существующих списков:

>>> seq = [1, 2, 3, 4, 5, 6, 7] >>> copied_list = seq[:] >>> copied_list [1, 2, 3, 4, 5, 6, 7] >>> copied_list is seq False

Создание мелкой копии означает, что копируется только структура элементов, но не сами элементы. Обе копии списка совместно используют одинаковые экземпляры отдельных элементов.

Если же вам необходимо продублировать абсолютно всё, включая и элементы, то необходимо создать глубокую копию списка ( copy.deepcopy(x) ). Для этой цели пригодится встроенный модуль в Python copy.

Ключевые выводы

Слайсы полезны не только для отбора элементов внутри последовательности, а могут также использоваться для очистки, реверсирования и копирования списков.

Источник

NumPy, часть 2: базовые операции над массивами

Python 3 логотип

Здравствуйте! Я продолжаю работу над пособием по python-библиотеке NumPy.

В прошлой части мы научились создавать массивы и их печатать. Однако это не имеет смысла, если с ними ничего нельзя делать.

Сегодня мы познакомимся с операциями над массивами.

Базовые операции

Математические операции над массивами выполняются поэлементно. Создается новый массив, который заполняется результатами действия оператора.

       :1: RuntimeWarning: divide by zero encountered in true_divide    

Для этого, естественно, массивы должны быть одинаковых размеров.

Также можно производить математические операции между массивом и числом. В этом случае к каждому элементу прибавляется (или что вы там делаете) это число.

NumPy также предоставляет множество математических операций для обработки массивов:

Полный список можно посмотреть здесь.

Многие унарные операции, такие как, например, вычисление суммы всех элементов массива, представлены также и в виде методов класса ndarray.

 

Индексы, срезы, итерации

Одномерные массивы осуществляют операции индексирования, срезов и итераций очень схожим образом с обычными списками и другими последовательностями Python (разве что удалять с помощью срезов нельзя).

           File  У многомерных массивов на каждую ось приходится один индекс. Индексы передаются в виде последовательности чисел, разделенных запятыми (то бишь, кортежами):

Когда индексов меньше, чем осей, отсутствующие индексы предполагаются дополненными с помощью срезов:

b[i] можно читать как b[i, ]. В NumPy это также может быть записано с помощью точек, как b[i, . ].

Например, если x имеет ранг 5 (то есть у него 5 осей), тогда

  • x[1, 2, . ] эквивалентно x[1, 2, :, :, :],
  • x[. , 3] то же самое, что x[:, :, :, :, 3] и
  • x[4, . , 5, :] это x[4, :, :, 5, :].

Итерирование многомерных массивов начинается с первой оси:

Однако, если нужно перебрать поэлементно весь массив, как если бы он был одномерным, для этого можно использовать атрибут flat:

Как уже говорилось, у массива есть форма (shape), определяемая числом элементов вдоль каждой оси:

Форма массива может быть изменена с помощью различных команд:

Порядок элементов в массиве в результате функции ravel() соответствует обычному "C-стилю", то есть, чем правее индекс, тем он "быстрее изменяется": за элементом a[0,0] следует a[0,1]. Если одна форма массива была изменена на другую, массив переформировывается также в "C-стиле". Функции ravel() и reshape() также могут работать (при использовании дополнительного аргумента) в FORTRAN-стиле, в котором быстрее изменяется более левый индекс.

Метод reshape() возвращает ее аргумент с измененной формой, в то время как метод resize() изменяет сам массив:

Если при операции такой перестройки один из аргументов задается как -1, то он автоматически рассчитывается в соответствии с остальными заданными:

Объединение массивов

Несколько массивов могут быть объединены вместе вдоль разных осей с помощью функций hstack и vstack.

hstack() объединяет массивы по первым осям, vstack() — по последним:

Функция column_stack() объединяет одномерные массивы в качестве столбцов двумерного массива:

Аналогично для строк имеется функция row_stack().

Разбиение массива

Используя hsplit() вы можете разбить массив вдоль горизонтальной оси, указав либо число возвращаемых массивов одинаковой формы, либо номера столбцов, после которых массив разрезается "ножницами":

Функция vsplit() разбивает массив вдоль вертикальной оси, а array_split() позволяет указать оси, вдоль которых произойдет разбиение.

Копии и представления

При работе с массивами, их данные иногда необходимо копировать в другой массив, а иногда нет. Это часто является источником путаницы. Возможно 3 случая:

Вообще никаких копий

Простое присваивание не создает ни копии массива, ни копии его данных:

Python передает изменяемые объекты как ссылки, поэтому вызовы функций также не создают копий.

Представление или поверхностная копия

Разные объекты массивов могут использовать одни и те же данные. Метод view() создает новый объект массива, являющийся представлением тех же данных.

Срез массива это представление:

Глубокая копия

Метод copy() создаст настоящую копию массива и его данных:

Для вставки кода на Python в комментарий заключайте его в теги

  • Книги о Python
  • GUI (графический интерфейс пользователя)
  • Курсы Python
  • Модули
  • Новости мира Python
  • NumPy
  • Обработка данных
  • Основы программирования
  • Примеры программ
  • Типы данных в Python
  • Видео
  • Python для Web
  • Работа для Python-программистов

Источник

Оцените статью