Python добавить в массив колонку

Python NumPy append + 9 Examples

In this Python Numpy tutorial, we will discuss Python NumPy append with a few examples like below:

  • Python NumPy append 2d array
  • Python NumPy append to an empty array
  • Python NumPy append row
  • Python NumPy append column
  • Python NumPy append two arrays
  • Python NumPy append axis
  • Python NumPy append array to array
  • Python NumPy append an element to the array
  • Python NumPy append not working

If you are new to NumPy, check Python Numpy to know how to use Python NumPy.

Python NumPy append

  • In this section, we will learn about Python NumPy append.
  • The Numpy append method allows us to insert new values into the last of an existing NumPy array.
  • This function always returns a copy of the existing numpy array with the values appended to the given axis.
  • We will start by creating a new script with the NumPy library imported as np.
  • Next, we will import a new numpy array called data or numbers by calling np.arange() and passing the value in the integer data type.
  • This method will create a NumPy array with integers.
  • Now we will easily use the append function by using np. append().
  • It is used to append values to the end of a given numpy array.
Читайте также:  Удаление свойств объекта php

Here is the Syntax of the numpy append function

numpy.append ( arr, values, axis=None )

Let’s take an example to check how the numpy append function is used in Python

import numpy as np a = np.array([[1,2,3],[2,6,7]]) b = np.append(a,[6,7,8]) print(b)

Here is the Screenshot of the following given code.

Python numpy append

Python numpy append 2d array

  • In this section, we will learn about python numpy append 2d array.
  • The Numpy append function provides us to add new elements to the end of an existing numpy array.
  • Two Dimensional Numpy array means the collection of data in lists of a list. It is also known as a matrix. In a 2D array, you have to use two square brackets that is why it said lists of lists.
  • We will use a function np.reshape().This method will change the shape of the numbers numpy array into the given number of rows and columns.
  • In NumPy append() 2dimension, we can easily use a function that is reshaping. This reshapes method allows a new shape to a numpy array without changing its data.
numpy.append ( arr, values, axis=None )
  1. array: input array
  2. values: values to be added in the array.
  3. axis: axis along which we want to calculate the sum value.
import numpy as np num = np.arange(4) b = num.reshape(2,2) num_2d = (np.append(b,[[4,5]],axis=0)) print(num_2d)

Here is the Screenshot of following given code

Python numpy append 2d array

Python numpy append to empty array

  • In this section, we will learn about python NumPy append to an empty array.
  • The Numpy append method allows us to insert new values to the end of an numpy array.
  • To create an empty array in Python, we use the empty function. it returns an array of given shapes and types without initializing the entries of an array.
  • It is very important to understand unlike zeros empty doesn’t set the array value to zero therefore the performance of the array will be faster than the zero function.
  • It requires a user to manually set all the values of the array.
  • Now we will use the append function by calling np.append(). It is used to append values to the end of a given array.
numpy.append ( arr, values, axis=None )
import numpy as np emp_array = np.array([]) arr =([2,3,4]) res = np.append(emp_array,arr) print(res)

Here is the Screenshot of following given code.

Python numpy append to empty array

Python numpy append row

  • In this section, we will learn about python numpy append row.
  • We will use a function numpy.reshape().This method will change the shape of the numbers numpy array into the given values of rows and columns.
  • In numpy append 2d, we can easily use the function that is np. reshaping. This reshapes function gives a new shape to a numpy array without changing its data.
numpy.append ( arr, values, axis=None )
import numpy as np num = np.arange(4) c = num.reshape(2,2) add_row = (np.append(c,[[9,8]],axis=0)) print(add_row)

Here is the Screenshot of the following given code.

Python numpy append row

This is an example of a Python numpy append row.

Python NumPy append column

  • In this section, we will learn about the python numpy append column.
  • We will use the method np.reshape().This function will change the shape of the numpy array into the specified given number of rows and columns.
  • In NumPy append 2d, we can easily use a function that is np.reshape().
  • This function gives a new shape to a numpy array without changing its data.
  • To append a column in a numpy array we use the method np.append().
numpy.append ( arr, values, axis=None )
  1. array: input array
  2. values: values to be added in the array.
  3. axis: axis along which we want to solve the sum value.
import numpy as np num = np.arange(4) c = num.reshape(2,2) new_column = (np.append(c,[[9],[8]],axis=1)) print(new_column)

Here is the Screenshot of the following given code.

Python numpy append column

This is an example of Python NumPy append column.

Python numpy append two arrays

  • In this section, we will learn about the python NumPy append two arrays.
  • To use this function, you have to make sure that the two numpy arrays have the same length and size.
  • The axis argument specifies the index of the new axis.
  • We will start by declaring a new script with the NumPy library.
  • Next, we will create a new numpy array called numbers or data by calling np. arange() and passing in the integer.
  • This function will declare an array with integers. Now we will use the append function by using np. append().
numpy.append ( arr, values, axis=None )
import numpy as np a = np.array([2,3]) b = np.array([4,5]) new_arr = np.append(a,b) print(new_arr)

Here is the Screenshot of following given code.

Python numpy append two arrays

This is how to append two arrays in Python NumPy.

Python NumPy append axis

  • In this section, we will learn about the python NumPy append axis.
  • We will use a function n.reshape().This method will change the shape of the numbers numpy array into the specified given number of rows and columns.
  • In numpy append 2d, we can easily use a function that is np.reshape().
  • This np.reshape() function gives a new shape to a numpy array without changing its data.
numpy.append ( arr, values, axis=None )
  1. array: input array
  2. values: values to be added in the array.
  3. axis: axis along which we want to calculate the sum value.
import numpy as np num = np.arange(4) b = num.reshape(2,2) num_2d = (np.append(b,[[4,5]],axis=0)) print(num_2d)

Here is the Screenshot of the following given code.

Python numpy append axis

Python NumPy append an element to array

  • In this section, we will learn about the python numpy append an element to the array.
  • The values will be concatenated at the end of the numpy array and a new numpy dimension array will be returned with new and old values.
  • We will start by creating a new script with the NumPy library imported as np.
  • Next, we will create a numpy array called numbers or data by calling np.arange() and passing the integer value.
  • This function will declare a NumPy array with integers.
numpy.append ( arr, values, axis=None )
import numpy as np a = np.array([2,3]) b = np.array([4,5]) new_arr = np.append(a,b) print(new_arr)

Here is the Screenshot of the following given code.

Python numpy append an element to the array

This is how to append an element to an array in Python NumPy.

Python NumPy append not working

  • In this section, we will learn about the python numpy append not working.
  • To use this method, you have to make sure that the two numpy arrays have the same length and the size.
import numpy as np a = np.array([1]) print(a) np.append(a, [2]) print(a)

Here is the Screenshot of following given code.

Python numpy append not working

Python NumPy append array to array

  • In this section, we will learn about the python numpy append array to array.
  • The axis parameter specifies the index of the given axis.
  • We will start by declaring a new script with the NumPy library.
  • Next, we will create a new numpy array called numbers by using numpy.arange() and passing in the integer value which will declare a NumPy array with integers.
  • Now we will use the append function by using numpy.conctenate().
numpy.conctenate ( arr, values, axis=None )
import numpy as np a = np.array([2,3]) b = np.array([4,5]) new_arr = np.concatenate((a,b),axis=0) print(new_arr)

Here is the Screenshot of following given code.

Python numpy append array to array

This is an example of Python NumPy append array to array.

In this Python Numpy tutorial, we will discuss Python NumPy append with a few examples like below:

  • Python numpy append 2d array
  • Python numpy append to an empty array
  • Python numpy append row
  • Python numpy append column
  • Python numpy append two arrays
  • Python numpy append axis
  • Python numpy append array to array
  • Python numpy append an element to the array
  • Python numpy append not working

I am Bijay Kumar, a Microsoft MVP in SharePoint. Apart from SharePoint, I started working on Python, Machine learning, and artificial intelligence for the last 5 years. During this time I got expertise in various Python libraries also like Tkinter, Pandas, NumPy, Turtle, Django, Matplotlib, Tensorflow, Scipy, Scikit-Learn, etc… for various clients in the United States, Canada, the United Kingdom, Australia, New Zealand, etc. Check out my profile.

Источник

Как добавить столбец в массив NumPy (с примерами)

Вы можете использовать один из следующих методов, чтобы добавить столбец в массив NumPy:

Способ 1: добавить столбец в конец массива

np.append(my_array, [[value1], [value2], [value3], . ], axis= 1 ) 

Способ 2: вставить столбец в определенную позицию массива

np.insert (my_array, 3 , [value1, value2, value3, . ], axis= 1 ) 

В следующих примерах показано, как использовать каждый метод на практике.

Пример 1: добавить столбец в конец массива NumPy

Предположим, у нас есть следующий массив NumPy:

import numpy as np #create NumPy array my_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) #view NumPy array my_array array([[1, 2, 3, 4], [5, 6, 7, 8]]) 

Мы можем использовать следующий синтаксис, чтобы добавить столбец в конец массива NumPy:

#append column to end of NumPy array new_array = np.append(my_array, [[10], [13]], axis= 1 ) #view updated array new_array array([[ 1, 2, 3, 4, 10], [ 5, 6, 7, 8, 13]]) 

Пример 2: вставка столбца в определенную позицию массива NumPy

Предположим, у нас есть следующий массив NumPy:

import numpy as np #create NumPy array my_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) #view NumPy array my_array array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

Мы можем использовать следующий синтаксис, чтобы вставить новый столбец перед столбцом в индексной позиции 2 массива NumPy:

#insert new column before column in index position 2 new_array = np.insert (my_array, 2 , [10, 13, 19], axis= 1 ) #view updated array new_array array([[ 1, 2, 10, 3], [ 4, 5, 13, 6], [ 7, 8, 19, 9]]) 

Обратите внимание, что новый столбец значений был вставлен перед столбцом в индексной позиции 2.

Дополнительные ресурсы

В следующих руководствах объясняется, как выполнять другие распространенные операции в NumPy:

Источник

numpy.insert#

Insert values along the given axis before the given indices.

Parameters : arr array_like

obj int, slice or sequence of ints

Object that defines the index or indices before which values is inserted.

Support for multiple insertions when obj is a single scalar or a sequence with one element (similar to calling insert multiple times).

values array_like

Values to insert into arr. If the type of values is different from that of arr, values is converted to the type of arr. values should be shaped so that arr[. obj. ] = values is legal.

axis int, optional

Axis along which to insert values. If axis is None then arr is flattened first.

Returns : out ndarray

A copy of arr with values inserted. Note that insert does not occur in-place: a new array is returned. If axis is None, out is a flattened array.

Append elements at the end of an array.

Join a sequence of arrays along an existing axis.

Delete elements from an array.

Note that for higher dimensional inserts obj=0 behaves very different from obj=[0] just like arr[:,0,:] = values is different from arr[:,[0],:] = values .

>>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> np.insert(a, 1, 5) array([1, 5, 1, . 2, 3, 3]) >>> np.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) 

Difference between sequence and scalars:

>>> np.insert(a, [1], [[1],[2],[3]], axis=1) array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), . np.insert(a, [1], [[1],[2],[3]], axis=1)) True 
>>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> np.insert(b, [2, 2], [5, 6]) array([1, 1, 5, . 2, 3, 3]) 
>>> np.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, . 2, 3, 3]) 
>>> np.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, . 2, 3, 3]) 
>>> x = np.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> np.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]]) 

Источник

Оцените статью