- Линейное программирование. Решение задач
- Линейное программирование. Решение задач графическим способом
- Симплексный метод решения задач линейного программирования
- Решение двойственной задачи линейного программирования
- Двойственный симплекс-метод
- Решение задач линейного программирования симплексным методом
- Решение задач симплекс-методом: примеры онлайн
Линейное программирование. Решение задач
Ниже представлены примеры решения задач линейного программирования.
Линейное программирование. Решение задач графическим способом
Симплексный метод решения задач линейного программирования
- Метод искусственного базиса
- Задача оптимального производства продукции
- Пример решения симлекс-методом
Решить следующую задачу ЛП в неканонической форме симплекс-методом:
f(x) = x1 – x2 – 3x3 → min - М-метод. Решить задачу М-задачу.
- Пример нахождения максимума функции симплексным методом
- Пример нахождения минимума функции симплексным методом
- Пример решения модифицированным симплекс-методом
- Пример решения симплекс-методом в столбцовой форме записи
- Симплекс-метод в строчечной форме записи. Пример решения
- Пример решения задачи симплексным методом в Excel
- Линейное программирование в Excel
Решение двойственной задачи линейного программирования
- Двойственная задача ЛП
Необходимо выполнить в указанном порядке следующие задания.
1. Найти оптимальный план прямой задачи:
а) графическим методом;
б) симплекс-методом (для построения исходного опорного плана рекомендуется использовать метод искусственного базиса).
2. Построить двойственную задачу.
3. Найти оптимальный план двойственной задачи из графического решения прямой, используя условия дополняющей нежесткости. - Двойственная задача в Excel
- Оценка целесообразности выпуска новой продукции
Двойственный симплекс-метод
Методы линейного программирования применяются для решения многих экстремальных задач, с которыми довольно часто приходится иметь дело в экономике. Решение таких задач сводится к нахождению крайних значений (максимума и минимума) некоторых функций переменных величин. Линейное программирование основано на решении системы линейных уравнений (с преобразованием в уравнения и неравенства), когда зависимость между изучаемыми явлениями строго функциональна. Для него характерны математическое выражение переменных величин, определенный порядок, последовательность расчетов (алгоритм), логический анализ. Применять его можно только в тех случаях, когда изучаемые переменные величины и факторы имеют математическую определенность и количественную ограниченность, когда в результате известной последовательности расчетов происходит взаимозаменяемость факторов, когда логика в расчетах, математическая логика, совмещаются с логически обоснованным пониманием сущности изучаемого явления. Методом линейного программирования решается транспортная задача, т.е. задача рационального прикрепления предприятий-потребителей к предприятиям-производителям.
Решение задач линейного программирования
симплексным методом
Если вы уже разобрались с графическим методом решения задач линейного программирования, самое время переходить к симплекс-методу. В отличие от первого, он практически не имеет ограничений на задачу (любое количество переменных, разные знаки и т.п.) и модифицируется в зависимости от типа задачи (например, М-метод или метод искусственного базиса).
При решении задачи симплекс методом вычисления обычно ведутся (для компактности и наглядности) в таблицах (табличный симплекс-метод), причем последняя таблица с оптимальным решением содержит важную дополнительную информацию: решение двойственной задачи, остатки ресурсов, сведения о дефицитных ресурсах и т.п., которая позволяет провести экономический анализ задачи линейного программирования (см. ниже пример 3).
Примеры решений задач симплекс-методом выложены бесплатно для вашего удобства — изучайте, ищите похожие, решайте. Если вам нужна помощь в выполнении подобных заданий, перейдите в раздел: решение линейного программирования на заказ.
Решение задач симплекс-методом: примеры онлайн
Задача 1. Компания производит полки для ванных комнат двух размеров — А и В. Агенты по продаже считают, что в неделю на рынке может быть реализовано до 550 полок. Для каждой полки типа А требуется 2 м2 материала, а для полки типа В — 3 м2 материала. Компания может получить до 1200 м2 материала в неделю. Для изготовления одной полки типа А требуется 12 мин машинного времени, а для изготовления одной полки типа В — 30 мин; машину можно использовать 160 час в неделю. Если прибыль от продажи полок типа А составляет 3 денежных единицы, а от полок типа В — 4 ден. ед., то сколько полок каждого типа следует выпускать в неделю?
Задача 2. Решить задачу линейного программирования симплекс-методом.
Задача 3. Предприятие производит 3 вида продукции: А1, А2, А3, используя сырьё двух типов. Известны затраты сырья каждого типа на единицу продукции, запасы сырья на планируемый период, а также прибыль от единицы продукции каждого вида.
- Сколько изделий каждого вида необходимо произвести, чтобы получить максимум прибыли?
- Определить статус каждого вида сырья и его удельную ценность.
- Определить максимальный интервал изменения запасов каждого вида сырья, в пределах которого структура оптимального плана, т.е. номенклатура выпуска, не изменится.
- Определить количество выпускаемой продукции и прибыль от выпуска при увеличении запаса одного из дефицитных видов сырья до максимально возможной (в пределах данной номенклатуры выпуска) величины.
- Определить интервалы изменения прибыли от единицы продукции каждого вида, при которых полученный оптимальный план не изменится.
Задача 6. Решить задачу симплекс-методом, рассматривая в качестве начального опорного плана, план, приведенный в условии:
Задача 7. Решить задачу модифицированным симплекс-методом.
Для производства двух видов изделий А и Б используется три типа технологического оборудования. На производство единицы изделия А оборудование первого типа используется а1=4 часов, оборудование второго типа а2=8 часов, а оборудование третьего типа а3=9 часов. На производство единицы изделия Б оборудование первого типа используется б1=7 часов, оборудование второго типа б2=3 часов, а оборудование третьего типа б3=5 часов.
На изготовление этих изделий оборудование первого типа может работать не более чем t1=49 часов, оборудование второго типа не более чем t2=51 часов, оборудование третьего типа не более чем t3=45 часов.
Прибыль от реализации единицы готового изделия А составляет АЛЬФА=6 рублей, а изделия Б – БЕТТА=5 рублей.
Составить план производства изделий А и Б, обеспечивающий максимальную прибыль от их реализации.