- Как построить график функции на Python при помощи Matplotlib
- Установка Matplotlib
- Базовая концепция Matplotlib
- Введение в pyplot
- Базовый пример построения графика
- Построение графиков разного типа
- 1. Линейный график
- 2. Столбчатая диаграмма
- 3. Круговая диаграмма
- 4. Гистограмма
- 5. Точечная диаграмма
- Построение графиков в Python при помощи Matplotlib
- Что мы рассмотрим?
- Почему Matplotlib может быть сложным?
- Pylab: что это и нужно ли мне это?
Как построить график функции на Python при помощи Matplotlib
Python предоставляет одну из самых популярных библиотек для построения графиков под названием Matplotlib. Это кроссплатформенный проект с открытым исходным кодом для создания 2D-графиков на основе данных в массиве. Обычно он используется для визуализации данных и представлен в виде различных графиков.
Matplotlib изначально задуман Джоном Д. Хантером в 2003 году. Последняя версия matplotlib – 2.2.0, выпущенная в январе 2018 года.
Прежде чем начать работу с библиотекой matplotlib, нам необходимо установить ее в нашей среде Python.
Установка Matplotlib
Введите следующую команду в своем терминале и нажмите клавишу ВВОД.
Приведенная выше команда установит библиотеку matplotlib и ее пакет зависимостей в операционной системе Windows. Разберемся как построить график функции на Python при помощи Matplotlib.
Базовая концепция Matplotlib
График состоит из следующих частей. Давайте разберемся с этими частями.
Figure: это целая фигура, которая может содержать одну или несколько осей(графиков). Мы можем думать о figure как о холсте, на котором хранятся сюжеты.
Axes: фигура может содержать несколько осей. Онf состоит из двух или трех(в случае 3D) объектов Axis. Каждая ось состоит из заголовка, x-метки и y-метки.
Axis: оси – это количество объектов, похожих на линии, которые отвечают за создание пределов графика.
Artist: это все, что мы видим на графике, например, текстовые объекты, объекты Line2D и объекты коллекций. Привязаны к Axes.
Введение в pyplot
Matplotlib предоставляет пакет pyplot, который используется для построения графика заданных данных. Matplotlib.pyplot – это набор функций командного стиля, которые заставляют matplotlib работать как MATLAB. Пакет pyplot содержит множество функций, которые используются для создания фигуры, создания ее области построения, дополнения графика метками, проведения некоторых линий в области построения и т. д.
Мы можем быстро построить график с помощью pyplot. Давайте посмотрим на следующий пример.
Базовый пример построения графика
Программа для создания базового примера простого графика следующая:
from matplotlib import pyplot as plt #ploting our canvas plt.plot([1,2,3],[4,5,1]) #display the graph plt.show()
Построение графиков разного типа
Мы можем построить различные графики, используя модуль pyplot.
1. Линейный график
Линейный график используется для отображения информации в виде серии линий. Его легко строить.
from matplotlib import pyplot as plt x = [1,2,3] y = [10,11,12] plt.plot(x,y) plt.title("Line graph") plt.ylabel('Y axis') plt.xlabel('X axis') plt.show()
Линия может быть изменена с помощью различных функций. Это делает график более привлекательным. Ниже приведен пример.
from matplotlib import pyplot as plt from matplotlib import style style.use('ggplot') x = [10, 12, 13] y = [8, 16, 6] x2 = [8, 15, 11] y2 = [6, 15, 7] plt.plot(x, y, 'b', label='line one', linewidth=5) plt.plot(x2, y2, 'r', label='line two', linewidth=5) plt.title('Epic Info') fig = plt.figure() plt.ylabel('Y axis') plt.xlabel('X axis') plt.show()
2. Столбчатая диаграмма
Одна из наиболее распространенных диаграмм, которая используется для представления данных, связанных с категориальными переменными. Функция bar() принимает три аргумента – категориальные переменные, значения и цвет.
from matplotlib import pyplot as plt Names = ['Arun','James','Ricky','Patrick'] Marks = [51,87,45,67] plt.bar(Names,Marks,color = 'blue') plt.title('Result') plt.xlabel('Names') plt.ylabel('Marks') plt.show()
3. Круговая диаграмма
Диаграмма – это круговой график, который разделен на части или сегменты. Он используется для представления процентных или пропорциональных данных, где каждый «кусок пирога» представляет определенную категорию. Давайте разберемся в приведенном ниже примере.
from matplotlib import pyplot as plt # Pie chart, where the slices will be ordered and plotted counter-clockwise: Aus_Players = 'Smith', 'Finch', 'Warner', 'Lumberchane' Runs = [42, 32, 18, 24] explode =(0.1, 0, 0, 0) # it "explode" the 1st slice fig1, ax1 = plt.subplots() ax1.pie(Runs, explode=explode, labels=Aus_Players, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.show()
4. Гистограмма
Гистограмма и столбчатая диаграмма очень похожи, но есть небольшая разница. Гистограмма используется для представления распределения, а столбчатая диаграмма используется для сравнения различных объектов. Гистограмма обычно используется для построения графика частоты ряда значений по сравнению с набором диапазонов значений.
В следующем примере мы взяли данные о различных процентах баллов учащегося и построили гистограмму в зависимости от количества учащихся. Давайте разберемся в следующем примере.
from matplotlib import pyplot as plt from matplotlib import pyplot as plt percentage = [97,54,45,10, 20, 10, 30,97,50,71,40,49,40,74,95,80,65,82,70,65,55,70,75,60,52,44,43,42,45] number_of_student = [0,10,20,30,40,50,60,70,80,90,100] plt.hist(percentage, number_of_student, histtype='bar', rwidth=0.8) plt.xlabel('percentage') plt.ylabel('Number of people') plt.title('Histogram') plt.show()
Разберемся еще на одном примере.
from matplotlib import pyplot as plt # Importing Numpy Library import numpy as np plt.style.use('fivethirtyeight') mu = 50 sigma = 7 x = np.random.normal(mu, sigma, size=200) fig, ax = plt.subplots() ax.hist(x, 20) ax.set_title('Historgram') ax.set_xlabel('bin range') ax.set_ylabel('frequency') fig.tight_layout() plt.show()
5. Точечная диаграмма
Данная диаграмма используется для сравнения переменной по отношению к другим переменным. Она определяется как влияние одной переменной на другую. Данные представлены в виде набора точек.
from matplotlib import pyplot as plt from matplotlib import style style.use('ggplot') x = [4,8,12] y = [19,11,7] x2 = [7,10,12] y2 = [8,18,24] plt.scatter(x, y) plt.scatter(x2, y2, color='g') plt.title('Epic Info') plt.ylabel('Y axis') plt.xlabel('X axis') plt.show()
import matplotlib.pyplot as plt a = [2, 2.5, 3, 3.5, 4.5, 4.7, 5.0] b = [7.5, 8, 8.5, 9, 9.5, 10, 10.5] a1 = [9, 8.5, 9, 9.5, 10, 10.5, 12] b1 = [3, 3.5, 4.7, 4, 4.5, 5, 5.2] plt.scatter(a, b, label='high income low saving', color='b') plt.scatter(a1, b1, label='low income high savings', color='g') plt.xlabel('saving*100') plt.ylabel('income*1000') plt.title('Scatter Plot') plt.legend() plt.show()
В этом руководстве мы обсудили все основные типы графиков, которые используются при визуализации данных. Чтобы узнать больше о графике, посетите наш учебник по matplotlib.
Построение графиков в Python при помощи Matplotlib
Картиной можно выразить тысячу слов. В случае с библиотекой Python matplotlib, к счастью, понадобится намного меньше слов в коде для создания качественных графиков.
Однако, matplotlib это еще и массивная библиотека, и создание графика, который будет выглядеть «просто, нормально» обычно проходит через путь проб и ошибок. Использование однострочных линий для создания базовых графиков в matplotlib – весьма просто, но умело пользоваться остальными 98% библиотеки может быть сложно.
Эта статья – руководство для пользователей Python на начальном-среднем уровне по matplotlib, с использованием как теории, так и практических примеров. Обучение по практическим примерам может быть очень продуктивным, и дает возможность получить представление даже на поверхностном уровне понимания внутренней работы и макета библиотеки.
Что мы рассмотрим?
- Pylab и pyplot: кто есть кто?
- Ключевые концепции дизайна matplotlib;
- Понимание plt.subplots();
- Визуализация массивов при помощи matplotlib;
- Построение графиков с комбинацией pandas и matplotlib.
Эта статья подразумевает, что пользователь имеет хотя-бы минимальное представление о NumPy. Мы в основном будем пользоваться модулем numpy.random для создания «игрушечных» данных, рисовать примеры из различных статистических источников.
Есть вопросы по Python?
На нашем форуме вы можете задать любой вопрос и получить ответ от всего нашего сообщества!
Telegram Чат & Канал
Вступите в наш дружный чат по Python и начните общение с единомышленниками! Станьте частью большого сообщества!
Одно из самых больших сообществ по Python в социальной сети ВК. Видео уроки и книги для вас!
Если у вас еще не установлен matplotlib, рекомендуем ознакомиться с руководством по установке, перед тем как продолжить.
Почему Matplotlib может быть сложным?
Изучение matplotlib временами может быть тяжелым процессом. Проблема не в нехватке документации (которая весьма обширная, между прочим). Сложности могут возникнуть со следующим:
- Размер библиотеки огромный сам по себе, около 70 000 строк кода;
- Matplotlib содержит несколько разных интерфейсов (способов построения фигуры) и может взаимодействовать с большим количеством бекендов. (Бекенды отвечают за то, как по факту будут отображаться диаграммы, не только за внутреннюю структуру);
- Несмотря на обширность, часть собственной документации matplotlib серьезно устарела. Библиотека все еще развивается, и множество старых примеров в сети могут включать на 70% меньше кода, чем в их современной версии;
Так что, перед тем как мы перейдем к сложным примерам, не помешает освоить корневые концепции дизайна matplotlib.
Pylab: что это и нужно ли мне это?
Немножко истории: Нейробиолог Джон Д. Хантер начал разрабатывать matplotlib в 2003 году, в основном вдохновляясь эмуляцией команд программного обеспечения Mathworks MATLAB. Джон отошел в мир иной трагически рано, в возрасте 44 лет в 2012 году, и matplotlib на сегодняшний день является целиком и полностью продуктом сообщества: развивается и поддерживается множеством людей. (Джон говорил об эволюции matplotlib на конференции SciPy в 2012, которую однозначно стоит посмотреть.)
Одной из важных особенностей MATLAB является его глобальный стиль. Концепция импорта Python не сильно используется в MATLAB, и большинство функций MATLAB легко доступны для пользователя на верхнем уровне.
Заказать свой собственный уникальный номер можно от Сим-Трейд.ру. Быстрая доставка в день заказа и красивые номера начиная от 300 руб. с выгодным тарифным планом. Свой уникальный номер это хороший признак для введения бизнеса с момента первого звонка.
Понимание того, что корни matplotlib растут из MATLAB, помогает объяснить существование pylab. pylab – это модуль внутри библиотеки matplotlib, который был встроен для подражания общего стиля MATLAB. Он существует только для внесения ряда функций классов из NumPy и matplotlib в пространство имен, что упрощает переход пользователей MATLAB, которые не сталкивались с необходимостью в операторах импорта. Бывшие пользователи MATLAB (которые очень хорошие люди, обещаем!) полюбили его функционал, потому что при помощи from pylab import * они могут просто вызывать plot() или array() напрямую также, как они это делали в MATLAB.
Проблема здесь может быть очевидной для некоторых пользователей Python: использование from pylab import * в сессии или скрипте – как правило, плохая идея. Matplotlib сегодня прямым текстом рекомендуют не делать этого в своих руководствах:
[pylab] все еще существует по историческим причинам, но его использование не рекомендуется. Он перегружает пространства имен функциями, которые оттеняют надстройки Python и может привести к скрытым багам. Для получения интеграции IPython без использования импортов, рекомендуется использовать %matplotlib.
В глубине своей, существует целая тонна потенциально конфликтных импортов, замаскированных в коротком источнике pylab. Фактически, использование ipython —pylab (из терминала или командной строки) или %pylab (из инструментов IPython/Jupyter) легко вызывает from pylab import *
Суть в том, что matplotlib забросили этот удобный модуль и рекомендуют не использовать pylab, подтверждая ключевое правило Python – явное лучше, чем неявное.
Без необходимости в использовании pylab, мы всегда можем обойтись всего одним каноничным импортом: