Питон функция умножения матриц

Транспонирование и умножение матриц на Python

В этом уроке мы напишем программы на Python для транспонирования и умножения матриц и вывода результатов.

Прежде чем писать программу транспонирования матрицы на Python, давайте сначала посмотрим на обзор транспонирования.

Транспонирование матрицы

Если вы заменяете строки матрицы столбцом той же матрицы, это называется транспонированием матрицы. Обозначается как X’. Например: Элемент в i-й строке и j-м столбце в X будет помещен в j-ю строку и i-й столбец в X’.

Пример: Предположим, мы взяли следующую матрицу A:

A = [[5, 4, 3] [2, 4, 6] [4, 7, 9] [8, 1, 3]]

At будет транспонированием указанной выше матрицы, т. е. A [i] [j] = At [j] [i], и поэтому At должно быть:

В = [5, 2, 4, 8] [4, 4, 7, 1] [3, 6, 9, 3]

Программа Python для транспонирования матрицы

Теперь мы напишем программу на Python для транспонирования входной заданной матрицы, где мы выполняем операцию, как мы выполнили в приведенном выше примере. Чтобы выполнить операцию транспонирования матрицы, мы будем использовать метод вложенного цикла for.

Давайте разберемся с использованием и реализацией этого метода на следующем примере.

# Define a matrix A A = [[5, 4, 3], [2, 4, 6], [4, 7, 9], [8, 1, 3]] # Define an empty matrix of reverse order transResult = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] # Use nested for loop on matrix A for a in range(len(A)): for b in range(len(A[0])): transResult[b][a] = A[a][b] # store transpose result on empty matrix # Printing result in the output print("The transpose of matrix A is: ") for res in transResult: print(res)
The transpose of matrix A is: [5, 2, 4, 8] [4, 4, 7, 1] [3, 6, 9, 3]

Умножение матриц

В этом разделе мы напишем программу на Python для умножения двух входных матриц и выведем результат на выходе. Эта программа укажет, как умножать две матрицы, имеющие определенные значения.

Читайте также:  Java out of memory exception

Прежде чем писать программу на Python, давайте сначала посмотрим на обзор умножения двух матриц.

Умножение матриц — это бинарная операция, в которой используется пара матриц для создания другой матрицы. Элементы в матрице умножаются в соответствии с элементарной арифметикой.

При умножении двух матриц элементы строки первой матрицы умножаются на элементы столбца второй матрицы.

Пример: предположим, что мы взяли следующие две матрицы A и B:

A = [[5, 4, 3] [2, 4, 6] [4, 7, 9]] and, B = [[3, 2, 4] [4, 3, 6] [2, 7, 5]]

C будет объединением двух указанных выше матриц, т. е. C = A + B, и поэтому C должно быть:

C = [[37, 43, 59] [34, 58, 62] [58, 92, 103]]

Как мы видим, результирующая матрица C, также известная как произведение матриц, имеет то же количество строк, что и первая матрица (матрица A), и такое же количество столбцов, как и вторая матрица (матрица B). Мы также знаем этот тип умножения матриц как скалярное произведение матриц.

Умножение двух матриц

Теперь мы напишем программу Python для умножения двух матриц, где мы выполняем умножение, как мы это делали в приведенном выше примере. Мы можем использовать различные методы для написания такой программы на Python, но в этом руководстве будем использовать только следующие два метода:

  1. Использование метода вложенного цикла.
  2. Использование метода понимания вложенного списка.

В обоих методах мы напишем пример программы, чтобы понять их реализацию для умножения двух матриц.

Способ 1: Использование метода вложенного цикла

В этом методе мы собираемся использовать вложенный цикл for для двух матриц, выполнять над ними умножение и сохранять результат умножения в третьей матрице в качестве итогового значения.

Давайте разберемся с реализацией этого метода на следующем примере.

# Define two matrix A and B in program A = [[5, 4, 3], [2, 4, 6], [4, 7, 9]] B = [[3, 2, 4], [4, 3, 6], [2, 7, 5]] # Define an empty matrix to store multiplication result multiResult = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] # Using nested for loop method on A & B matrix for m in range(len(A)): for n in range(len(B[0])): for o in range(len(B)): multiResult[m][n] += A[m][o] * B[o][n] # Storing multiplication result in empty matrix # Printing multiplication result in the output print("The multiplication result of matrix A and B is: ") for res in multiResult: print(res)
The multiplication result of matrix A and B is: [37, 43, 59] [34, 58, 62] [58, 92, 103]

Способ 2: Использование метода понимания вложенного списка

В этом методе мы будем использовать понимание вложенного списка, чтобы получить результат умножения двух входных матриц. При использовании в программе метода понимания списка мы также будем использовать «zip в Python» для вложенного списка. Давайте разберемся с реализацией этого метода на следующем примере.

# Define two matrix A & B in the program A = [[5, 4, 3], [2, 4, 6], [4, 7, 9]] B = [[3, 2, 4], [4, 3, 6], [2, 7, 5]] # Using nested list method with zip in Python multiResult = [[sum(a * b for a, b in zip(Arow, Bcol)) for Bcol in zip(*B)] for Arow in A] # Printing multiplication result in the output print("The multiplication result of matrix A and B is: ") for res in multiResult: print(res)
The multiplication result of matrix A and B is: [37, 43, 59] [34, 58, 62] [58, 92, 103]

Источник

numpy.matmul#

A location into which the result is stored. If provided, it must have a shape that matches the signature (n,k),(k,m)->(n,m). If not provided or None, a freshly-allocated array is returned.

For other keyword-only arguments, see the ufunc docs .

New in version 1.16: Now handles ufunc kwargs

The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d vectors.

If the last dimension of x1 is not the same size as the second-to-last dimension of x2.

If a scalar value is passed in.

Complex-conjugating dot product.

Sum products over arbitrary axes.

Einstein summation convention.

alternative matrix product with different broadcasting rules.

The behavior depends on the arguments in the following way.

  • If both arguments are 2-D they are multiplied like conventional matrices.
  • If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly.
  • If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
  • If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.

matmul differs from dot in two important ways:

  • Multiplication by scalars is not allowed, use * instead.
  • Stacks of matrices are broadcast together as if the matrices were elements, respecting the signature (n,k),(k,m)->(n,m) :
>>> a = np.ones([9, 5, 7, 4]) >>> c = np.ones([9, 5, 4, 3]) >>> np.dot(a, c).shape (9, 5, 7, 9, 5, 3) >>> np.matmul(a, c).shape (9, 5, 7, 3) >>> # n is 7, k is 4, m is 3 

The matmul function implements the semantics of the @ operator introduced in Python 3.5 following PEP 465.

It uses an optimized BLAS library when possible (see numpy.linalg ).

For 2-D arrays it is the matrix product:

>>> a = np.array([[1, 0], . [0, 1]]) >>> b = np.array([[4, 1], . [2, 2]]) >>> np.matmul(a, b) array([[4, 1], [2, 2]]) 

For 2-D mixed with 1-D, the result is the usual.

>>> a = np.array([[1, 0], . [0, 1]]) >>> b = np.array([1, 2]) >>> np.matmul(a, b) array([1, 2]) >>> np.matmul(b, a) array([1, 2]) 

Broadcasting is conventional for stacks of arrays

>>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4)) >>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2)) >>> np.matmul(a,b).shape (2, 2, 2) >>> np.matmul(a, b)[0, 1, 1] 98 >>> sum(a[0, 1, :] * b[0 , :, 1]) 98 

Vector, vector returns the scalar inner product, but neither argument is complex-conjugated:

Scalar multiplication raises an error.

>>> np.matmul([1,2], 3) Traceback (most recent call last): . ValueError: matmul: Input operand 1 does not have enough dimensions . 

The @ operator can be used as a shorthand for np.matmul on ndarrays.

>>> x1 = np.array([2j, 3j]) >>> x2 = np.array([2j, 3j]) >>> x1 @ x2 (-13+0j) 

Источник

Умножение матриц NumPy: начните за 5 минут

bestprogrammer.ru

Умножение матриц NumPy

Без рубрики

NumPy — популярная библиотека Python, которая предлагает ряд мощных математических функций. Библиотека широко используется в количественных областях, таких как наука о данных, машинное обучение и глубокое обучение. Мы можем использовать NumPy для выполнения сложных математических вычислений, таких как умножение матриц.

Умножение матриц может помочь нам быстро приблизиться к очень сложным вычислениям. Он может помочь нам в теории сетей, линейных системах уравнений, моделировании населения и многом другом. В этом руководстве мы рассмотрим некоторые основные вычисления с умножением матриц NumPy.

Что такое NumPy?

NumPy — это библиотека Python с открытым исходным кодом, которую мы можем использовать для выполнения высокоуровневых математических операций с массивами, матрицами, линейной алгеброй, анализом Фурье и т. Д. Библиотека NumPy очень популярна в научных вычислениях, науках о данных и машинном обучении. NumPy совместим с популярными библиотеками данных, такими как pandas, matplotlib и Scikit-learn. Это намного быстрее, чем списки Python, потому что он объединяет более быстрые коды, такие как C и C ++, в Python. Он также разбивает наши задачи на несколько частей и обрабатывает каждую часть одновременно.

Установка и импорт NumPy

Прежде чем мы начнем, убедитесь, что у нас установлен NumPy. Если у вас уже есть Python, вы можете установить NumPy с помощью одной из следующих команд:

Источник

Оцените статью