Парсинг web страниц python

Web Scraping с помощью python

Недавно заглянув на КиноПоиск, я обнаружила, что за долгие годы успела оставить более 1000 оценок и подумала, что было бы интересно поисследовать эти данные подробнее: менялись ли мои вкусы в кино с течением времени? есть ли годовая/недельная сезонность в активности? коррелируют ли мои оценки с рейтингом КиноПоиска, IMDb или кинокритиков?
Но прежде чем анализировать и строить красивые графики, нужно получить данные. К сожалению, многие сервисы (и КиноПоиск не исключение) не имеют публичного API, так что, приходится засучить рукава и парсить html-страницы. Именно о том, как скачать и распарсить web-cайт, я и хочу рассказать в этой статье.
В первую очередь статья предназначена для тех, кто всегда хотел разобраться с Web Scrapping, но не доходили руки или не знал с чего начать.

Off-topic: к слову, Новый Кинопоиск под капотом использует запросы, которые возвращают данные об оценках в виде JSON, так что, задача могла быть решена и другим путем.

Задача

  • Этап 1: выгрузить и сохранить html-страницы
  • Этап 2: распарсить html в удобный для дальнейшего анализа формат (csv, json, pandas dataframe etc.)

Инструменты

  • re
    Регулярные выражения, конечно, нам пригодятся, но использовать только их, на мой взгляд, слишком хардкорный путь, и они немного не для этого. Были придуманы более удобные инструменты для разбора html, так что перейдем к ним.
  • BeatifulSoup, lxml
    Это две наиболее популярные библиотеки для парсинга html и выбор одной из них, скорее, обусловлен личными предпочтениями. Более того, эти библиотеки тесно переплелись: BeautifulSoup стал использовать lxml в качестве внутреннего парсера для ускорения, а в lxml был добавлен модуль soupparser. Подробнее про плюсы и минусы этих библиотек можно почитать в обсуждении. Для сравнения подходов я буду парсить данные с помощью BeautifulSoup и используя XPath селекторы в модуле lxml.html.
  • scrapy
    Это уже не просто библиотека, а целый open-source framework для получения данных с веб-страниц. В нем есть множество полезных функций: асинхронные запросы, возможность использовать XPath и CSS селекторы для обработки данных, удобная работа с кодировками и многое другое (подробнее можно почитать тут). Если бы моя задача была не разовой выгрузкой, а production процессом, то я бы выбрала его. В текущей постановке это overkill.
Читайте также:  Html css class text color

Загрузка данных

Первая попытка

Приступим к выгрузке данных. Для начала, попробуем просто получить страницу по url и сохранить в локальный файл.

import requests user_id = 12345 url = 'http://www.kinopoisk.ru/user/%d/votes/list/ord/date/page/2/#list' % (user_id) # url для второй страницы r = requests.get(url) with open('test.html', 'w') as output_file: output_file.write(r.text.encode('cp1251'))

image

Открываем полученный файл и видим, что все не так просто: сайт распознал в нас робота и не спешит показывать данные.

Разберемся, как работает браузер

Однако, у браузера отлично получается получать информацию с сайта. Посмотрим, как именно он отправляет запрос. Для этого воспользуемся панелью «Сеть» в «Инструментах разработчика» в браузере (я использую для этого Firebug), обычно нужный нам запрос — самый продолжительный.

image

Как мы видим, браузер также передает в headers UserAgent, cookie и еще ряд параметров. Для начала попробуем просто передать в header корректный UserAgent.

headers = < 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:45.0) Gecko/20100101 Firefox/45.0' >r = requests.get(url, headers = headers)

На этот раз все получилось, теперь нам отдаются нужные данные. Стоит отметить, что иногда сайт также проверяет корректность cookie, в таком случае помогут sessions в библиотеке Requests.

Скачаем все оценки

Теперь мы умеем сохранять одну страницу с оценками. Но обычно у пользователя достаточно много оценок и нужно проитерироваться по всем страницам. Интересующий нас номер страницы легко передать непосредственно в url. Остается только вопрос: «Как понять сколько всего страниц с оценками?» Я решила эту проблему следующим образом: если указать слишком большой номер страницы, то нам вернется вот такая страница без таблицы с фильмами. Таким образом мы можем итерироваться по страницам до тех, пор пока находится блок с оценками фильмов ( ).

image

import requests # establishing session s = requests.Session() s.headers.update(< 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:45.0) Gecko/20100101 Firefox/45.0' >) def load_user_data(user_id, page, session): url = 'http://www.kinopoisk.ru/user/%d/votes/list/ord/date/page/%d/#list' % (user_id, page) request = session.get(url) return request.text def contain_movies_data(text): soup = BeautifulSoup(text) film_list = soup.find('div', ) return film_list is not None # loading files page = 1 while True: data = load_user_data(user_id, page, s) if contain_movies_data(data): with open('./page_%d.html' % (page), 'w') as output_file: output_file.write(data.encode('cp1251')) page += 1 else: break

Парсинг

Немного про XPath

XPath — это язык запросов к xml и xhtml документов. Мы будем использовать XPath селекторы при работе с библиотекой lxml (документация). Рассмотрим небольшой пример работы с XPath

from lxml import html test = '''   

one

two

another tag

''' tree = html.fromstring(test) tree.xpath('//h2') # все h2 теги tree.xpath('//h2[@align]') # h2 теги с атрибутом align tree.xpath('//h2[@align="center"]') # h2 теги с атрибутом align равным "center" div_node = tree.xpath('//div')[0] # div тег div_node.xpath('.//h2') # все h2 теги, которые являются дочерними div ноде

Подробнее про синтаксис XPath также можно почитать на W3Schools.

Вернемся к нашей задаче

Теперь перейдем непосредственно к получению данных из html. Проще всего понять как устроена html-страница используя функцию «Инспектировать элемент» в браузере. В данном случае все довольно просто: вся таблица с оценками заключена в теге . Выделим эту ноду:

from bs4 import BeautifulSoup from lxml import html # Beautiful Soup soup = BeautifulSoup(text) film_list = soup.find('div', ) # lxml tree = html.fromstring(text) film_list_lxml = tree.xpath('//div[@class = "profileFilmsList"]')[0]

image

Каждый фильм представлен как или . Рассмотрим, как вытащить русское название фильма и ссылку на страницу фильма (также узнаем, как получить текст и значение атрибута).

# Beatiful Soup movie_link = item.find('div', ).find('a').get('href') movie_desc = item.find('div', ).find('a').text # lxml movie_link = item_lxml.xpath('.//div[@class = "nameRus"]/a/@href')[0] movie_desc = item_lxml.xpath('.//div[@class = "nameRus"]/a/text()')[0]

Еще небольшой хинт для debug’a: для того, чтобы посмотреть, что внутри выбранной ноды в BeautifulSoup можно просто распечатать ее, а в lxml воспользоваться функцией tostring() модуля etree.

# BeatifulSoup print item #lxml from lxml import etree print etree.tostring(item_lxml)
def read_file(filename): with open(filename) as input_file: text = input_file.read() return text def parse_user_datafile_bs(filename): results = [] text = read_file(filename) soup = BeautifulSoup(text) film_list = film_list = soup.find('div', ) items = film_list.find_all('div', ) for item in items: # getting movie_id movie_link = item.find('div', ).find('a').get('href') movie_desc = item.find('div', ).find('a').text movie_id = re.findall('\d+', movie_link)[0] # getting english name name_eng = item.find('div', ).text #getting watch time watch_datetime = item.find('div', ).text date_watched, time_watched = re.match('(\d\.\d\.\d), (\d:\d)', watch_datetime).groups() # getting user rating user_rating = item.find('div', ).text if user_rating: user_rating = int(user_rating) results.append(< 'movie_id': movie_id, 'name_eng': name_eng, 'date_watched': date_watched, 'time_watched': time_watched, 'user_rating': user_rating, 'movie_desc': movie_desc >) return results def parse_user_datafile_lxml(filename): results = [] text = read_file(filename) tree = html.fromstring(text) film_list_lxml = tree.xpath('//div[@class = "profileFilmsList"]')[0] items_lxml = film_list_lxml.xpath('//div[@class = "item even" or @class = "item"]') for item_lxml in items_lxml: # getting movie id movie_link = item_lxml.xpath('.//div[@class = "nameRus"]/a/@href')[0] movie_desc = item_lxml.xpath('.//div[@class = "nameRus"]/a/text()')[0] movie_id = re.findall('\d+', movie_link)[0] # getting english name name_eng = item_lxml.xpath('.//div[@class = "nameEng"]/text()')[0] # getting watch time watch_datetime = item_lxml.xpath('.//div[@class = "date"]/text()')[0] date_watched, time_watched = re.match('(\d\.\d\.\d), (\d:\d)', watch_datetime).groups() # getting user rating user_rating = item_lxml.xpath('.//div[@class = "vote"]/text()') if user_rating: user_rating = int(user_rating[0]) results.append(< 'movie_id': movie_id, 'name_eng': name_eng, 'date_watched': date_watched, 'time_watched': time_watched, 'user_rating': user_rating, 'movie_desc': movie_desc >) return results

Резюме

image

В результате, мы научились парсить web-сайты, познакомились с библиотеками Requests, BeautifulSoup и lxml, а также получили пригодные для дальнейшего анализа данные о просмотренных фильмах на КиноПоиске.

Полный код проекта можно найти на github’e.

UPD

  • Аутентификация: зачастую для того, чтобы получить данные с сайта нужно пройти аутентификацию, в простейшем случае это просто HTTP Basic Auth: логин и пароль. Тут нам снова поможет библиотека Requests. Кроме того, широко распространена oauth2: как использовать oauth2 в python можно почитать на stackoverflow. Также в комментариях есть пример от Terras того, как пройти аутентификацию в web-форме.
  • Контролы: На сайте также могут быть дополнительные web-формы (выпадающие списки, check box’ы итд). Алгоритм работы с ними примерно тот же: смотрим, что посылает браузер и отправляем эти же параметры как data в POST-запрос (Requests, stackoverflow). Также могу порекомендовать посмотреть 2й урок курса «Data Wrangling» на Udacity, где подробно рассмотрен пример scrapping сайта US Department of Transportation и посылка данных web-форм.

Источник

Парсинг на Python с Beautiful Soup

Парсинг — это распространенный способ получения данных из интернета для разного типа приложений. Практически бесконечное количество информации в сети объясняет факт существования разнообразных инструментов для ее сбора. В процессе скрапинга компьютер отправляет запрос, в ответ на который получает HTML-документ. После этого начинается этап парсинга. Здесь уже можно сосредоточиться только на тех данных, которые нужны. В этом материале используем такие библиотеки, как Beautiful Soup, Ixml и Requests. Разберем их.

Установка библиотек для парсинга

Чтобы двигаться дальше, сначала выполните эти команды в терминале. Также рекомендуется использовать виртуальную среду, чтобы система «оставалась чистой».

pip install lxml pip install requests pip install beautifulsoup4

Поиск сайта для скрапинга

Для знакомства с процессом скрапинга можно воспользоваться сайтом https://quotes.toscrape.com/, который, похоже, был создан для этих целей.

сайт для скрапинга

Из него можно было бы создать, например, хранилище имен авторов, тегов или самих цитат. Но как это сделать? Сперва нужно изучить исходный код страницы. Это те данные, которые возвращаются в ответ на запрос. В современных браузерах этот код можно посмотреть, кликнув правой кнопкой на странице и нажав «Просмотр кода страницы».

Просмотр кода страницы

На экране будет выведена сырая HTML-разметка страница. Например, такая:

Источник

Оцените статью