Объединение таблиц в Pandas: merge, join и concatenate
Люди, которые работают с sql, знают, что для объединения таблиц используется операция join. В библиотеке Pandas также предусмотрен join, но помимо него, есть еще такие табличные функции объединения, как merge и concatenate. Когда только-только знакомишься с этими функциями разница между ними неочевидна, поэтому я предлагаю вам краткий обзор отличительных особенностей этих операций.
DataFrame.join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False)
Из трех операций объединения датафреймов join является наиболее простым и предлагает минимум «средств управления» объединения ваших таблиц.
Он объединит все столбцы из двух таблиц с общими столбцами, переименованными в определенные lsuffix и rsuffix. Способ объединения строк из двух таблиц определяется с помощью how – inner, outer, right, left (по умолчанию) аналогично sql. Визуализировать понимание соединения таблиц всеми этими способами могут схемы, изображенные с помощью кругов Эйлера:
Рассмотрим как работает объединение с помощью Join на примере:
df1 = pd.DataFrame() df2 = pd.DataFrame()
DataFrame.merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
Аналогично предыдущей функции merge также объединяет все столбцы из двух таблиц с общими столбцами, переименованными в определенные suffixes. Но в отличие от join, merge уже предлагает три способа организации построчного выравнивания. Первый способ заключается в использовании on = «НАЗВАНИЕ СТОЛБЦА», в этом случае столбец должен быть общим столбцом в обеих таблицах. Второй способ — использовать left_on = «НАЗВАНИЕ СТОЛБЦА» и right_on = «НАЗВАНИЕ СТОЛБЦА». Такой способ позволяет объединить две таблицы, используя два разных столбца. Третий способ — использовать left_index = True и right_index = True, в данном случае таблицы будут объединены по индексам.
df2 = pd.DataFrame() df1 = pd.DataFrame()
Concatenate
pandas.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=None, copy=True)
В отличии от join и merge, которые по умолчанию работают со столбцами, concat позволяет выбрать, хотим ли мы выполнять объединение по столбцам или по строкам. Для этого в аргументе функции необходимо прописать axis=0 или axis=1, в первом случае вторая таблица будет присоединена к первой снизу, во втором – справа.
df2 = pd.DataFrame() df1 = pd.DataFrame()
DataFrame.append(self, other, ignore_index=False, verify_integrity=False, sort=False)
Напоследок будет уместно упомянуть такую функцию как append(). Она несколько выбивается из перечня ранее упомянутых функций, но тем не менее ее также можно считать инструментом объединения таблиц. Append() используется для добавления строк одного датафрейма в конец другого, возвращая новый датафрейм. Столбцы, не входящие в исходный датафрейм, добавляются как новые столбцы, а новые ячейки заполняются значениями NaN.
df2 = pd.DataFrame() df1 = pd.DataFrame()
Мы рассмотрели основные различия функций объединения датафреймов в Pandas. Join и merge работают со столбцами, и переименовывает общие столбцы, используя заданный суффикс. Но merge позволяет более гибко настроить построчное выравнивание. В отличии от join и merge, concat позволяет работать как со столбцами, так и со строками, но не дает переименовывать строки/столбцы.
pandas.DataFrame.merge#
DataFrame. merge ( right , how = ‘inner’ , on = None , left_on = None , right_on = None , left_index = False , right_index = False , sort = False , suffixes = (‘_x’, ‘_y’) , copy = None , indicator = False , validate = None ) [source] #
Merge DataFrame or named Series objects with a database-style join.
A named Series object is treated as a DataFrame with a single named column.
The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed.
If both key columns contain rows where the key is a null value, those rows will be matched against each other. This is different from usual SQL join behaviour and can lead to unexpected results.
Type of merge to be performed.
- left: use only keys from left frame, similar to a SQL left outer join; preserve key order.
- right: use only keys from right frame, similar to a SQL right outer join; preserve key order.
- outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically.
- inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys.
- cross: creates the cartesian product from both frames, preserves the order of the left keys.
Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames.
left_on label or list, or array-like
Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns.
right_on label or list, or array-like
Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns.
left_index bool, default False
Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels.
right_index bool, default False
Use the index from the right DataFrame as the join key. Same caveats as left_index.
sort bool, default False
Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword).
suffixes list-like, default is (“_x”, “_y”)
A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in left and right respectively. Pass a value of None instead of a string to indicate that the column name from left or right should be left as-is, with no suffix. At least one of the values must not be None.
copy bool, default True
If False, avoid copy if possible.
indicator bool or str, default False
If True, adds a column to the output DataFrame called “_merge” with information on the source of each row. The column can be given a different name by providing a string argument. The column will have a Categorical type with the value of “left_only” for observations whose merge key only appears in the left DataFrame, “right_only” for observations whose merge key only appears in the right DataFrame, and “both” if the observation’s merge key is found in both DataFrames.
validate str, optional
If specified, checks if merge is of specified type.
- “one_to_one” or “1:1”: check if merge keys are unique in both left and right datasets.
- “one_to_many” or “1:m”: check if merge keys are unique in left dataset.
- “many_to_one” or “m:1”: check if merge keys are unique in right dataset.
- “many_to_many” or “m:m”: allowed, but does not result in checks.
A DataFrame of the two merged objects.
Merge with optional filling/interpolation.
Similar method using indices.
Support for specifying index levels as the on , left_on , and right_on parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0
>>> df1 = pd.DataFrame('lkey': ['foo', 'bar', 'baz', 'foo'], . 'value': [1, 2, 3, 5]>) >>> df2 = pd.DataFrame('rkey': ['foo', 'bar', 'baz', 'foo'], . 'value': [5, 6, 7, 8]>) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8
Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended.
>>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7
Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns.
>>> df1.merge(df2, left_on='lkey', right_on='rkey', . suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7
Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns.
>>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): . ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object')
>>> df1 = pd.DataFrame('a': ['foo', 'bar'], 'b': [1, 2]>) >>> df2 = pd.DataFrame('a': ['foo', 'baz'], 'c': [3, 4]>) >>> df1 a b 0 foo 1 1 bar 2 >>> df2 a c 0 foo 3 1 baz 4
>>> df1.merge(df2, how='inner', on='a') a b c 0 foo 1 3
>>> df1.merge(df2, how='left', on='a') a b c 0 foo 1 3.0 1 bar 2 NaN
>>> df1 = pd.DataFrame('left': ['foo', 'bar']>) >>> df2 = pd.DataFrame('right': [7, 8]>) >>> df1 left 0 foo 1 bar >>> df2 right 0 7 1 8
>>> df1.merge(df2, how='cross') left right 0 foo 7 1 foo 8 2 bar 7 3 bar 8