- § 3. Общая постановка задачи линейного программирования. Симплекс- метод
- 1. Множество решений системы (1) из § 2 является выпуклым многогранником (напомним, что выпуклое множество вместе с любыми двумя точками содержит все точки соединяющего их отрезка).
- 2. Вершины многогранника называются угловыми точками.
- Симплексный метод решения ЗЛП
- Аналитическое введение в симплекс-метод
§ 3. Общая постановка задачи линейного программирования. Симплекс- метод
Как мы уже отмечали, графический метод, описанный в предыдущих примерах, приемлем в отношении задач с не более, чем двумя переменными. В большинстве же практических ситуаций число неизвестных может быть гораздо больше. Симплекс- метод- один из наиболее известных алгебраических подходов к решению задач линейного программирования с более, чем с двумя переменными. Отметим прежде всего
Основной принцип линейного программирования
1. Множество решений системы (1) из § 2 является выпуклым многогранником (напомним, что выпуклое множество вместе с любыми двумя точками содержит все точки соединяющего их отрезка).
2. Вершины многогранника называются угловыми точками.
3. Оптимальное решение (глобальный максимум) достигается хотя бы в одной угловой точке выпуклого многогранника, число которых конечно. Отсюда, принципиальный путь поиска оптимального решения: перебрать все угловые точки (их конечное число!) и среди них выбрать ту в которой целевая функция достигает максимума. Однако, как отмечается в [13] , технические сложности подобной процедуры настолько существенны, что за исключением простейших случаев, этот метод практически бесполезен.
Поэтому, необходимо научиться отбрасывать заведомо “плохие” угловые точки и работать только с перспективными, не прибегая к грaфикам.
Именно это и реализовал Данциг в разработанном им симплекс-методе. Суть метода – “направленный перебор”, когда вначале находят, какую нибудь угловую точку, а затем переходят к таким соседним угловым точкам, в которых значения целевой функции увеличиваются. Такой направленный перебор позволяет резко сократить число шагов (итераций).
Ясно, что для реализации симплекс- метода необходимо математически:
— выбрать начальное опорное решение (угловую точку)
— проверить его на оптимальность
— при необходимости перейти к лучшему
— уметь распознавать ситуации отсутствия оптимального решения.
Рассмотрим этапы “ручного” cимплекс — метода, когда необходимые преобразования осуществляются в таблицах стандартного вида.
Фирма намеревается приступить к изготовлению трех видов изделий, используя три вида ресурсов. Исходные данные приведены в таблице стандартного вида.
Расходные коэффициенты
Симплексный метод решения ЗЛП
Симплекс-метод — это итеративный процесс направленного решения системы уравнений по шагам, который начинается с опорного решения и в поисках лучшего варианта движется по угловым точкам области допустимого решения, улучшающих значение целевой функции до тех пор, пока целевая функция не достигнет оптимального значения.
- в виде симплексной таблицы (метод жордановых преобразований); базовой форме записи;
- модифицированным симплекс-методом; в столбцовой форме; в строчечной форме.
- Шаг №1
- Шаг №2
- Видеоинструкция
- Оформление Word
- Также решают
Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word и Excel . При этом ограничения типа xi≥0 не учитывайте. Если в задании для некоторых xi отсутствуют ограничения, то ЗЛП необходимо привести к КЗЛП, или воспользоваться этим сервисом. При решении автоматически определяется использование М-метода (симплекс-метод с искусственным базисом) и двухэтапного симплекс-метода.
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.
Объем товара Х (в партиях) | Доход G(X) | ||
1 | 2 | 3 | |
0 | 0 | 0 | 0 |
1 | 28 | 30 | 32 |
2 | 41 | 42 | 45 |
3 | 50 | 55 | 48 |
4 | 62 | 64 | 60 |
5 | 76 | 76 | 72 |
- Составление первого опорного плана. Переход к канонической форме задачи линейного программирования путем введения неотрицательных дополнительных балансовых переменных.
- Проверка плана на оптимальность. Если найдется хотя бы один коэффициент индексной строки меньше нуля, то план не оптимальный, и его необходимо улучшить.
- Определение ведущих столбца и строки. Из отрицательных коэффициентов индексной строки выбирается наибольший по абсолютной величине. Затем элементы столбца свободных членов симплексной таблицы делит на элементы того же знака ведущего столбца.
- Построение нового опорного плана. Переход к новому плану осуществляется в результате пересчета симплексной таблицы методом Жордана—Гаусса.
Аналитическое введение в симплекс-метод
Симплексный метод является универсальным методом линейного программирования. Итак, если мы решаем ЗЛП в канонической форме, то система ограничений — это обычная система линейных уравнений. При решении задач ЛП получаются системы линейных уравнений, имеющие, как правило, бесконечно много решений. Например, пусть дана система
Здесь число уравнений равно 2, а неизвестных — 3, уравнений меньше. Выразим x1 и x2 через x3 :
Это общее решение системы. если переменной x3 придавать произвольные числовые значения, то будем находить частные решения системы. Например, x3=1 → x1=1 → x2=6. Имеем (1, 6, 1) — частное решение. Пусть x3=2 → x1=-3, x2= 1, (-3, 1, 2) — другое частное решение. Таких частных решений бесконечно много. Переменные x1 и x2 называются базисными, а переменная x3 — не базисная, свободная. Совокупность переменных x1 и x2 образует базис: Б (x1, x2). Если x3 = 0, то полученное частное решение (5, 11, 0) называется базисным решением, соответствующим базису Б (x1, x2). Базисным называется решение, соответствующее нулевым значениям свободных переменных.
В качестве базисных можно было взять и другие переменные: (x1, x3) или (x2, x3).
Как переходить от одного базиса Б(x1, x2) к другому базису Б(x1, x3)?
Для этого надо переменную x3 перевести в базисные, а x2 — в небазисные т. е. в уравнениях надо x3 выразить через x2 и подставить в 1-е: Базисное решение, соответствующее базису Б (x1, x3), таково: (-19/5; 0; 11/5). Если теперь от базиса Б (x1, x3) нам захочется перейти к базису Б (x2, x3), то
Базисное решение, соответствующее базису Б (x2, x3): (0;19/4; 7/8).
Из трех найденных базисных решений решение, соответствующее базису Б (x1, x3) — отрицательное x1 < 0, нас в ЗЛП интересуют только неотрицательные решения. Если задача ЛП имеет решение, то оно достигается на множестве базисных неотрицательных решений системы ограничений канонической формы. Поэтому идея симплекс-метода и состоит в последовательном переходе от одного базиса к другому, лучшему с точки зрения значения целевой функции. Пример . Решить задачу ЛП. Функцию F= x2 — x1 → min необходимо минимизировать при заданной системе ограничений:
-2x1 + x2 + x3 = 2
x1 + x2 + x5 = 5
x1 — 2x2 + x4 = 12
xi ≥ 0, i = 1, 5 Эти ограничения могут рассматриваться как произошедшие из неравенств, а переменные x3, x5, x4 — как дополнительные.
Запишем ограничения, выбрав базис из переменных Б< x3, , x4, x5>: Этому базису соответствует базисное неотрицательное решение
x1 = 0, x2 = 0, x3 = 2, x4 = 2, x5 = 5 или (0, 0, 2, 2, 5).
Теперь нужно выразить F через небазисные переменные, в нашем случае это уже сделано: F= x2 — x1.
Проверим, достигла ли функция F своего минимального значения. Для этого базисного решения F= 0 — 0 = 0 — значение функции равно 0. Но его можно уменьшить, если x1 будет возрастать, т. к. коэффициент в функции при x1 отрицателен. Однако при увеличении x1 значения переменных x4, x5 уменьшаются (смотрите второе и третье равенство системы ограничений). Переменная x1 не может быть увеличена больше чем до 2, иначе x4 станет отрицательной (ввиду равенства 2), и не больше, чем до 5, иначе x5 — отрицателен. Итак, из анализа равенств следует, что переменную x1 можно увеличить до 2, при этом значение функции уменьшится.
Перейдем к новому базису Б2, введя переменную x1 в базис вместо x4.
Б2x1, x3, x5>.
Выразим эти базисные переменные через небазисные. Для этого сначала выразим x1 из второго уравнения и подставим в остальные, в том числе и в функцию. Имеем:
F = -2 — x2 + x4.
Базисное решение, соответствующее базису Б2x1, x3, x5>, имеет вид (2, 0, 6, 0, 3), и функция принимает значение F= -2 в этом базисе.
Значение функции можно и дальше уменьшать, увеличивая x2. Однако, глядя на систему, x2 можно увеличивать лишь до 1, т. к. иначе из последнего равенства x5 = 3 — 3x2 + x4 следует, что при x2 > 1 x5 станет отрицательной. А у нас все переменные в ЗЛП предполагаются неотрицательными. Остальные уравнения системы не дают ограничений на x2. Поэтому увеличим x2 до 1, введя его в базис вместо x5: Б3x1, x2, x3>.
Выразим x2 через x5 и подставим во все уравнения:
Базисное решение, соответствующее базису Б3х1, х2, х3>, выписывается (4, 1, 9, 0, 0), и функция принимает значение F= -3. Заметим, что значение F уменьшилось, т. е. улучшилось по сравнению с предыдущим базисом.
Посмотрев на вид целевой функции , заметим, что улучшить, т. е. уменьшить значение F нельзя и только при x4 = 0, x5 = 0 значение F= -3. как только x4, x5 станут положительными, значение F только увеличится, т. к. коэффициенты при x4, x5 положительны. Значит, функция F достигла своего оптимального значения F* = -3. Итак, наименьшее значение F, равное -3, достигается при x1* = 4, x2* = 1, x3* = 9, x4* = 0, x5* = 0. На этом примере очень наглядно продемонстрирована идея метода: постепенно переходя от базиса к базису, при этом всегда обращая внимание на значения целевой функции, которые должны улучшиться, мы приходим к такому базису, в котором значение целевой функции улучшить нельзя, оно оптимально. Заметим, что базисов конечное число, поэтому количество шагов, совершаемых нами до того нужного базиса, конечно.