Обратная сортировка массива питон

Функция sorted() в Python – простая обратная сортировка

У нас есть функция sorted() в Python, и мы можем использовать ее для сортировки строк, представленных во вводе. Но что, если нам нужно произвести обратную сортировку входной строки? Можем ли мы использовать эту функцию sorted() для сортировки в обратном порядке? Ответ положительный. В этом руководстве мы узнаем, как мы можем использовать функцию sorted() для обратной сортировки входной строки.

Функция sorted() для обратной сортировки строки

В Python строки являются неизменяемыми типами данных, и поэтому нам становится очень сложно выполнять обратную сортировку строк. Но с помощью функции sorted() мы легко можем выполнить задачу обратной сортировки строк. Для выполнения обратной сортировки с помощью функции sorted() мы можем использовать следующие методы:

В обоих методах, упомянутых выше, мы рассмотрим пример программы, чтобы понять реализацию этих методов.

Метод 1: с помощью sorted() + reduce() + lambda

Мы можем выполнить обратную сортировку строк, используя комбинацию функции reduce() и лямбда с функцией sorted(). В этом методе после обработки входной строки в обратном порядке мы присоединяемся к результирующему списку обратно отсортированных символов с помощью лямбда-функции.

Примечание: мы можем использовать эту функцию только в версиях Python 2.x. Это связано с тем, что функция reduce() удалена из версий Python 3.x и выдает ошибку, если мы запускаем Python с версией 3.x.

# Taking an input string inputString = input("Give an input string for reverse sorting: ") # Reverse Sorting the input string resultantString = reduce(lambda x, y: x + y, sorted(inputString, reverse = True)) # reverse sorting with using sorted() + reduce() + lambda function # printing reverse sorted string in output as result print("The input string after reverse sorting is: " + str(resultantString))
Give an input string for reverse sorting: JAVATPOINT The input string after reverse sorting is: VTTPONJIAA

Метод 2: с помощью join() + sorted() + reverse

Используя комбинацию функции join() и обратного ключа с функцией sorted(), мы можем очень легко выполнить задачу обратной сортировки за два шага. На первом этапе работы мы получим список символов, отсортированных в обратном порядке, а на втором этапе мы объединяем эти символы, чтобы в результате получить строку, отсортированную в обратном порядке.

# Taking an input string inputString = input("Give an input string for reverse sorting: ") # Reverse Sorting the input string resultantString = ''.join(sorted(inputString, reverse = True)) # reverse sorting with using sorted() + join() function with reverse key # printing reverse sorted string in output as result print("The input string after reverse sorting is: " + str(resultantString))
Give an input string for reverse sorting: JAVATPOINT The input string after reverse sorting is: VTTPONJIAA

Источник

Читайте также:  Html checkbox обязательное заполнение

Sorting HOW TO¶

Python lists have a built-in list.sort() method that modifies the list in-place. There is also a sorted() built-in function that builds a new sorted list from an iterable.

In this document, we explore the various techniques for sorting data using Python.

Sorting Basics¶

A simple ascending sort is very easy: just call the sorted() function. It returns a new sorted list:

>>> sorted([5, 2, 3, 1, 4]) [1, 2, 3, 4, 5] 

You can also use the list.sort() method. It modifies the list in-place (and returns None to avoid confusion). Usually it’s less convenient than sorted() — but if you don’t need the original list, it’s slightly more efficient.

>>> a = [5, 2, 3, 1, 4] >>> a.sort() >>> a [1, 2, 3, 4, 5] 

Another difference is that the list.sort() method is only defined for lists. In contrast, the sorted() function accepts any iterable.

>>> sorted(1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'>) [1, 2, 3, 4, 5] 

Key Functions¶

Both list.sort() and sorted() have a key parameter to specify a function (or other callable) to be called on each list element prior to making comparisons.

For example, here’s a case-insensitive string comparison:

>>> sorted("This is a test string from Andrew".split(), key=str.lower) ['a', 'Andrew', 'from', 'is', 'string', 'test', 'This'] 

The value of the key parameter should be a function (or other callable) that takes a single argument and returns a key to use for sorting purposes. This technique is fast because the key function is called exactly once for each input record.

A common pattern is to sort complex objects using some of the object’s indices as keys. For example:

>>> student_tuples = [ . ('john', 'A', 15), . ('jane', 'B', 12), . ('dave', 'B', 10), . ] >>> sorted(student_tuples, key=lambda student: student[2]) # sort by age [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] 

The same technique works for objects with named attributes. For example:

>>> class Student: . def __init__(self, name, grade, age): . self.name = name . self.grade = grade . self.age = age . def __repr__(self): . return repr((self.name, self.grade, self.age)) >>> student_objects = [ . Student('john', 'A', 15), . Student('jane', 'B', 12), . Student('dave', 'B', 10), . ] >>> sorted(student_objects, key=lambda student: student.age) # sort by age [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] 

Operator Module Functions¶

The key-function patterns shown above are very common, so Python provides convenience functions to make accessor functions easier and faster. The operator module has itemgetter() , attrgetter() , and a methodcaller() function.

Using those functions, the above examples become simpler and faster:

>>> from operator import itemgetter, attrgetter >>> sorted(student_tuples, key=itemgetter(2)) [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] >>> sorted(student_objects, key=attrgetter('age')) [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] 

The operator module functions allow multiple levels of sorting. For example, to sort by grade then by age:

>>> sorted(student_tuples, key=itemgetter(1,2)) [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)] >>> sorted(student_objects, key=attrgetter('grade', 'age')) [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)] 

Ascending and Descending¶

Both list.sort() and sorted() accept a reverse parameter with a boolean value. This is used to flag descending sorts. For example, to get the student data in reverse age order:

>>> sorted(student_tuples, key=itemgetter(2), reverse=True) [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)] >>> sorted(student_objects, key=attrgetter('age'), reverse=True) [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)] 

Sort Stability and Complex Sorts¶

Sorts are guaranteed to be stable. That means that when multiple records have the same key, their original order is preserved.

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)] >>> sorted(data, key=itemgetter(0)) [('blue', 1), ('blue', 2), ('red', 1), ('red', 2)] 

Notice how the two records for blue retain their original order so that (‘blue’, 1) is guaranteed to precede (‘blue’, 2) .

This wonderful property lets you build complex sorts in a series of sorting steps. For example, to sort the student data by descending grade and then ascending age, do the age sort first and then sort again using grade:

>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key >>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] 

This can be abstracted out into a wrapper function that can take a list and tuples of field and order to sort them on multiple passes.

>>> def multisort(xs, specs): . for key, reverse in reversed(specs): . xs.sort(key=attrgetter(key), reverse=reverse) . return xs >>> multisort(list(student_objects), (('grade', True), ('age', False))) [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] 

The Timsort algorithm used in Python does multiple sorts efficiently because it can take advantage of any ordering already present in a dataset.

Decorate-Sort-Undecorate¶

This idiom is called Decorate-Sort-Undecorate after its three steps:

  • First, the initial list is decorated with new values that control the sort order.
  • Second, the decorated list is sorted.
  • Finally, the decorations are removed, creating a list that contains only the initial values in the new order.

For example, to sort the student data by grade using the DSU approach:

>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)] >>> decorated.sort() >>> [student for grade, i, student in decorated] # undecorate [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)] 

This idiom works because tuples are compared lexicographically; the first items are compared; if they are the same then the second items are compared, and so on.

It is not strictly necessary in all cases to include the index i in the decorated list, but including it gives two benefits:

  • The sort is stable – if two items have the same key, their order will be preserved in the sorted list.
  • The original items do not have to be comparable because the ordering of the decorated tuples will be determined by at most the first two items. So for example the original list could contain complex numbers which cannot be sorted directly.

Another name for this idiom is Schwartzian transform, after Randal L. Schwartz, who popularized it among Perl programmers.

Now that Python sorting provides key-functions, this technique is not often needed.

Comparison Functions¶

Unlike key functions that return an absolute value for sorting, a comparison function computes the relative ordering for two inputs.

For example, a balance scale compares two samples giving a relative ordering: lighter, equal, or heavier. Likewise, a comparison function such as cmp(a, b) will return a negative value for less-than, zero if the inputs are equal, or a positive value for greater-than.

It is common to encounter comparison functions when translating algorithms from other languages. Also, some libraries provide comparison functions as part of their API. For example, locale.strcoll() is a comparison function.

To accommodate those situations, Python provides functools.cmp_to_key to wrap the comparison function to make it usable as a key function:

sorted(words, key=cmp_to_key(strcoll)) # locale-aware sort order 

Odds and Ends¶

  • For locale aware sorting, use locale.strxfrm() for a key function or locale.strcoll() for a comparison function. This is necessary because “alphabetical” sort orderings can vary across cultures even if the underlying alphabet is the same.
  • The reverse parameter still maintains sort stability (so that records with equal keys retain the original order). Interestingly, that effect can be simulated without the parameter by using the builtin reversed() function twice:
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)] >>> standard_way = sorted(data, key=itemgetter(0), reverse=True) >>> double_reversed = list(reversed(sorted(reversed(data), key=itemgetter(0)))) >>> assert standard_way == double_reversed >>> standard_way [('red', 1), ('red', 2), ('blue', 1), ('blue', 2)] 
>>> Student.__lt__ = lambda self, other: self.age  other.age >>> sorted(student_objects) [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] 
>>> students = ['dave', 'john', 'jane'] >>> newgrades = 'john': 'F', 'jane':'A', 'dave': 'C'> >>> sorted(students, key=newgrades.__getitem__) ['jane', 'dave', 'john'] 

Источник

Оцените статью