Neural network projects with python

Saved searches

Use saved searches to filter your results more quickly

You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session.

License

ryanhaber/Neural-Network-Projects-with-Python

This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

Sign In Required

Please sign in to use Codespaces.

Launching GitHub Desktop

If nothing happens, download GitHub Desktop and try again.

Launching GitHub Desktop

If nothing happens, download GitHub Desktop and try again.

Launching Xcode

If nothing happens, download Xcode and try again.

Launching Visual Studio Code

Your codespace will open once ready.

There was a problem preparing your codespace, please try again.

Latest commit

Git stats

Files

Failed to load latest commit information.

README.md

Neural Network Projects with Python

Book Name

This is the code repository for Neural Network Projects with Python, published by Packt.

The ultimate guide to using Python to explore the true power of neural networks through six projects

Neural networks are at the core of recent AI advances, providing some of the best resolutions to many real-world problems, including image recognition, medical diagnosis, text analysis, and more. This book goes through some basic neural network and deep learning concepts, as well as some popular libraries in Python for implementing them.

This book covers the following exciting features:

  • Learn various neural network architectures and its advancements in AI
  • Master deep learning in Python by building and training neural network
  • Master neural networks for regression and classification
  • Discover convolutional neural networks for image recognition
  • Learn sentiment analysis on textual data using Long Short-Term Memory

If you feel this book is for you, get your copy today!

https://www.packtpub.com/

Instructions and Navigations

All of the code is organized into folders. For example, Chapter02.

The code will look like the following:

def detect_faces(img, draw_box=True): # convert image to grayscale grayscale_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

Following is what you need for this book: This book is a perfect match for data scientists, machine learning engineers, and deep learning enthusiasts who wish to create practical neural network projects in Python. Readers should already have some basic knowledge of machine learning and neural networks.

With the following software and hardware list you can run all code files present in the book (Chapter 1-7).

Software and Hardware List

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. Click here to download it.

James Loy has more than five years, expert experience in data science in the finance and healthcare industries. He has worked with the largest bank in Singapore to drive innovation and improve customer loyalty through predictive analytics. He has also experience in the healthcare sector, where he applied data analytics to improve decision-making in hospitals. He has a master’s degree in computer science from Georgia Tech, with a specialization in machine learning.

His research interest includes deep learning and applied machine learning, as well as developing computer-vision-based AI agents for automation in industry. He writes on Towards Data Science, a popular machine learning website with more than 3 million views per month.

Click here if you have any feedback or suggestions.

Источник

Neural Network Projects with Python

Neural Network Projects with Python

Read it now on the O’Reilly learning platform with a 10-day free trial.

O’Reilly members get unlimited access to books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.

Book description

Build your Machine Learning portfolio by creating 6 cutting-edge Artificial Intelligence projects using neural networks in Python

Key Features

  • Discover neural network architectures (like CNN and LSTM) that are driving recent advancements in AI
  • Build expert neural networks in Python using popular libraries such as Keras
  • Includes projects such as object detection, face identification, sentiment analysis, and more

Book Description

Neural networks are at the core of recent AI advances, providing some of the best resolutions to many real-world problems, including image recognition, medical diagnosis, text analysis, and more. This book goes through some basic neural network and deep learning concepts, as well as some popular libraries in Python for implementing them.

It contains practical demonstrations of neural networks in domains such as fare prediction, image classification, sentiment analysis, and more. In each case, the book provides a problem statement, the specific neural network architecture required to tackle that problem, the reasoning behind the algorithm used, and the associated Python code to implement the solution from scratch. In the process, you will gain hands-on experience with using popular Python libraries such as Keras to build and train your own neural networks from scratch.

By the end of this book, you will have mastered the different neural network architectures and created cutting-edge AI projects in Python that will immediately strengthen your machine learning portfolio.

What you will learn

  • Learn various neural network architectures and its advancements in AI
  • Master deep learning in Python by building and training neural network
  • Master neural networks for regression and classification
  • Discover convolutional neural networks for image recognition
  • Learn sentiment analysis on textual data using Long Short-Term Memory
  • Build and train a highly accurate facial recognition security system

Who this book is for

This book is a perfect match for data scientists, machine learning engineers, and deep learning enthusiasts who wish to create practical neural network projects in Python. Readers should already have some basic knowledge of machine learning and neural networks.

Источник

Читайте также:  Php this static methods
Оцените статью