1.2. Модульное программирование
Модульное программирование является естественным следствием проектирования сверху вниз и заключается в том, что программа разбивается на части – модули, разрабатываемые по отдельности. В программировании под модулем понимается отдельная подпрограмма, а подпрограммы часто называются процедурами или процедурами-функциями. Поэтому модульное программирование еще называется процедурным.
Модуль должен обладать следующими свойствами:
- один вход и один выход – на входе программный модуль получает определенный набор исходных данных, выполняет содержательную обработку и возвращает один набор результатных данных, т.е. реализуется стандартный принцип IPO (Input — Process — Output — вход-процесс-выход);
- функциональная завершенность – модуль выполняет перечень регламентированных операций для реализации каждой отдельной функции в полном составе, достаточных для завершения начатой обработки;
- логическая независимость – результат работы программного модуля зависит только от исходных данных, но не зависит от работы других модулей;
- слабые информационные связи с другими программными модулями – обмен информацией между модулями должен быть по возможности минимизирован;
- обозримый по размеру и сложности программный код.
Установить разумные размеры модулей трудно, хотя стоит придерживаться правила: выделять модули, пока это целесообразно. Обычно размеры модуля ограничены несколькими десятками строк кода на языке высокого уровня. Считается, что малый модуль лучше большого, поскольку с увеличением размеров модулей их восприятие и отладка усложняются ускоренными темпами. Кроме того, большие модули часто оказываются взаимозависимыми, и изменения в одном из них влекут необходимость модификации других.
Модули содержат определение доступных для обработки данных, операции обработки данных, схемы взаимосвязи с другими модулями.
Каждый модуль состоит из спецификации и тела. Спецификации определяют правила использования модуля, а тело – способ реализации процесса обработки.
Принципы модульного программирования программных продуктов во многом сходны с принципами нисходящего проектирования: сначала определяются состав и подчиненность функций, а затем — набор программных модулей, реализующих эти функции.
Однотипные функции реализуются одними и теми же модулями. Функция верхнего уровня обеспечивается главным модулем; он управляет выполнением нижестоящих функций, которым соответствуют подчиненные модули.
При определении набора модулей, реализующих функции конкретного алгоритма, необходимо учитывать следующее:
- каждый модуль вызывается на выполнение вышестоящим модулем и, закончив работу, возвращает управление вызвавшему его модулю;
- принятие основных решений в алгоритме выносится на максимально «высокий» по иерархии уровень;
- для использования одной и той же функции в разных местах алгоритма создается один модуль, который вызывается на выполнение по мере необходимости.
В результате дальнейшей детализации алгоритма создается функционально-модульная схема (ФМС) алгоритма приложения, являющася основой для программирования (рис. 1.2).
Состав и вид программных модулей, их назначение и характер использования в программе в значительной степени определяются инструментальными средствами.
Алгоритмы большой сложности обычно представляются с помощью схем двух видов:
- обобщенной схемы алгоритма – раскрывает общий принцип функционирования алгоритма и основные логические связи между отдельными модулями на уровне обработки информации (ввод и редактирование данных, вычисления, печать результатов и т.п.);
- д етальной схемы алгоритма – представляет содержание каждого элемента обобщенной схемы с использованием управляющих структур в блок-схемах алгоритма, псевдокода либо алгоритмических языков высокого уровня.
Наиболее часто детально проработанные алгоритмы изображаются в виде блок-схем согласно требованиям структурного программирования. При их разработке используются условные обозначения согласно:
- ГОСТ 19.003-80 ЕСПД (Единая система программной документации). Обозначения условные графические,
- ГОСТ 19.002-80 ЕСПД. Схемы алгоритмов и программ. Правила обозначения.
Что такое модульное программирование и кому оно нужно
В любой профессии, не только в программировании, вы переживаете разные эмоциональные состояния по ходу выполнения проекта:
- Сначала есть энтузиазм от перспектив и возможностей.
- Затем приходит азарт. Первые ошибки и трудности вас только раззадоривают, заставляя мозг и фантазию работать на полную катушку.
- Следом проседает концентрация. В какой-то момент вы перестаёте обращать внимание на предупреждения и мелкие ошибки, откладывая решение этих проблем на потом.
- В итоге вы теряете мотивацию. Вы исправляете одну ошибку – появляется три. Вы пытаетесь добавить новую функцию, но выкидываете идею в мусорное ведро из-за нежелания тратить на это много времени.
Некоторые думают, что это нормально: стоит смириться и каждый раз проживать этот цикл. На деле же всё немного проще, и решение лежит не в области психологии, а в подходе к созданию кода.
Классическая проблема программирования
В западной литературе существует термин «big ball of mud» для описания архитектуры программы. Давайте переведём его дословно. Графически «большой шар грязи» можно представить в виде точек на окружности, символизирующих функциональные элементы, и прямых – связей между ними:
Похоже на ваши глаза перед сдачей проекта, не так ли?
Это иллюстрация той сложности, с которой вам надо работать, какое количество связей учитывать, если возникает ошибка.
Программирование не уникальная дисциплина: здесь можно и нужно применять опыт из других областей. Возьмём, к примеру, компьютер. Их производители не задумываются над многообразием задач, которые решает пользователь, и уж тем более не выделяют под каждую маленький процессор и память. Компьютер – это просто набор независимых сложных объектов, объединённых в одном корпусе при помощи разъёмов и проводов. Объекты не уникальны, не оптимизированы конкретно под вас, и тем не менее блестяще справляются со своей задачей.
В программировании есть точно такие же решения. Например, библиотеки. Они помогают не тратить драгоценное время на изобретение велосипеда. Однако для частных задач библиотеки не эффективны – создание отнимет уйму времени, а при единичной повторяемости эффективность стремится к нулю.
В этом случае полезнее обратиться к модулям. Модуль – логически завершённый фрагмент кода, имеющий конкретное функциональное назначение. Для взаимодействия модулей используются способы, не позволяющие изменять параметры и функциональность. Плюсы модульного программирования очевидны:
- Ускорение разработки.
- Повышение надёжности.
- Упрощение тестирования.
- Взаимозаменяемость.
Модульное программирование крайне эффективно при групповых разработках, где каждый сотрудник может сконцентрироваться только на своём фронте работ и не оглядываться на решения коллег. Однако и в индивидуальном подходе вы получаете, как минимум, вышеописанные преимущества.
Проблемы модульного программирования
Сама по себе идея использования модулей не сильно упрощает код, важно минимизировать количество прямых связей между ними. Здесь мы подходим к понятию «инверсия управления» (IoC). Упрощённо – это принцип программирования, при котором отдельные компоненты кода максимально изолированы друг от друга. То есть детали одного модуля не должны влиять на реализацию другого. Достигается это при помощи интерфейсов или других видов представления, не обеспечивающих прямого доступа к модульному коду.
В повседневной жизни таких примеров множество. Чтобы купить билет на самолёт или узнать время вылета, вам не надо звонить пилоту. Чтобы выпить молока, не надо ехать в деревню или на завод и стоять над душой у коровы. Для этого всегда есть посредники.
В модульном программировании существует три основные реализации:
- Внедрение зависимостей. Способ, при котором каждый элемент имеет свой интерфейс, взаимодействие модулей происходит через интерфейсы.
- Фабричный метод. Основывается на существовании некого объекта, предназначенного для создания других объектов. Иначе говоря, введение в программу прототипа, объединяющего общие черты для большинства объектов. Прямого взаимодействия между модулями нет, все параметры наследуются от «завода».
- Сервисный метод. Создаётся один общий интерфейс, являющийся буфером для взаимодействия объектов. Похожую функцию в реальной жизни выполняют колл-центры, магазины, площадки для объявлений и т.д.
Несмотря на то, что первая реализация IoC используется чаще всего, для первых шагов в модульном программировании лучше использовать другие два. Причина – простое создание интерфейсов лишь ограничивает доступ к модулям, а для снижения сложности кода необходимо также уменьшить количество связей. Интерфейсы, хаотично ссылающиеся на другие интерфейсы, код только усложняют.
Для решения этой проблемы необходимо разработать архитектуру кода. Как правило, она схожа с файловой структурой любого приложения:
Таким образом, поддержка принципов модульного программирования, инверсии управления и четкой архитектуры приложения поможет убить сразу трёх зайцев:
- Обеспечить чёткое функциональное разделение кода. При возникновении ошибок можно быстро определить источник, а исправления не приведут к появлению новых сбоев.
- Минимизировать количество связей. Это позволит упростить разработку, отдав на откуп нескольким разработчикам разные модули. Или вы сможете самостоятельно разрабатывать каждый блок без оглядки на другие, что тоже экономит время и силы.
- Создать иерархию с чёткой вертикалью наследования. Это повышает надёжность кода, так как тестирование провести проще, а результаты информативнее.
Соблюдение принципа модульности в больших проектах позволит сэкономить время и не расплескать стартовый задор. Более того, у вас получится наконец сосредоточиться на самом интересном – реализации оригинальных задумок в коде. А ведь это именно то, что каждый из нас ищет в программировании.