- Методы линейного программирования: информационная технология «Поиск решения»
- Определение количества целых чисел при выпуске продукции четырех типов. Получение и величина максимальной прибыли. Расчет методом линейного программирования. Составление системы ограничений. Определение целевой функции. Вычисление затрат на сырье.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
- Подобные документы
- 14. Математическое обеспечение информационных технологий
Методы линейного программирования: информационная технология «Поиск решения»
Определение количества целых чисел при выпуске продукции четырех типов. Получение и величина максимальной прибыли. Расчет методом линейного программирования. Составление системы ограничений. Определение целевой функции. Вычисление затрат на сырье.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования
«Сибирский государственный университет телекоммуникаций и информатики»
Отчет по лабораторной работе
Методы линейного программирования: информационная технология «Поиск решения«
Определить в каком количестве (целые числа) следует выпускать продукцию четырех типов для изготовления которой требуются ресурсы трех типов для получения максимальной прибыли и какова величина этой прибыли? прибыль программирование сырье
1. Целевая функция z= 60*x1+70*x2+120*x3+130*x4
2. Составим систему ограничений
3. Определяем в каком количестве следует выпускать продукцию четырех типов для получения максимальной прибыли и величину прибыли.
Величина прибыли равна: 1320 руб.
Выпускать продукцию в количестве:
Подобные документы
Расчет производства необходимого количества продукции для получения максимальной прибыли предприятия. Математическая модель для решения задач линейного программирования. Построение ограничений и целевых функций. Исследование чувствительности модели.
Задачи линейного программирования. Многоугольник решений системы. Вычисление значения целевой функции. Интервальная группировка данных. Среднее квадратическое отклонение выборки. Вычисление коэффициента корреляции. Закон распределения случайной величины.
Алгоритм решения задач линейного программирования симплекс-методом. Построение математической модели задачи линейного программирования. Решение задачи линейного программирования в Excel. Нахождение прибыли и оптимального плана выпуска продукции.
Нахождение минимума целевой функции для системы ограничений, заданной многоугольником. Графическое решение задачи линейного программирования. Решение задачи линейного программирования с использованием таблицы и методом отыскания допустимого решения.
Критерий эффективности и функции в системе ограничений. Общая постановка задачи линейного программирования. Составление математической модели задачи. Алгоритмы решения задачи симплексным методом. Построение начального опорного решения методом Гаусса.
14. Математическое обеспечение информационных технологий
В основе любого инструмента информационных технологий лежат математические модели, методы и алгоритмы – математическое обеспечение.
Математическое обеспечение информационных технологий — совокупность математических методов, моделей, алгоритмов и программ для реализации целей и задач информационной системы, а также нормального функционирования комплекса технических средств.
К средствам математического обеспечения относятся:
-средства моделирования процессов управления;
-типовые задачи управления;
-методы математического программирования, математической статистики, теории массового обслуживания и др.
Математической моделью называют систему математических соотношений, описывающих процесс или явление, а операции по составлению и изучению таких моделей называют математическим моделированием. (как пример можно привести MATLAB — это средство математического моделирования, обеспечивающее проведение исследований практически во всех известных областях науки и техники. При этом структура пакета позволяет эффективно сочетать оба основных подхода к созданию модели: аналитический и имитационный. А так же ряд других пакетов, таких как MathCad, Mathematica, Maple, Scilab и др.) Математическое программирование — дисциплина, изучающая теорию и методы решения задачи оптимизации.. К методам математического программирования относят: Линейное программирование, нелинейное программирование, целочисленное программирование, динамическое программирование, теория графов, стохастическое линейное программирование, геометрическое программирование, задачи теории массового обслуживания и др.
Математическое обеспечение (МО) состоит из алгоритмического и программного.
Алгоритмическое обеспечение (АО) — это совокупность математических методов, моделей и алгоритмов, используемых в системе для решения задач и обработки информации.
Программное обеспечение (ПО) подразделяется на общее и специальное ПО. Общее программное обеспечение (ОПО) — это машинно-ориентированное ПО. Оно реализовано в виде операционной системы, которая управляет работой УВК (супервизор, монитор), тестовых программ и системы программирования, автоматизирующей процесс написания и отладки прикладных программ на языках высокого уровня. Специальное программное обеспечение (СПО) является проблемно-ориентированным и реализуются в виде комплекса программ решения конкретных задач ИС. Оно подразделяется на общесистемное и прикладное программное обеспечения.
Прикладные и обеспечивающие программы формируются, прежде всего, на базе математических методов. В тех случаях, когда для решения той или иной актуальной задачи не удается подобрать математический метод, используются эвристические алгоритмы.
При этом следует помнить, что каждый из методов может быть применен для решения различных по специфике задач пользователей. И наоборот: одна и та же задача может решаться с помощью различных методов. Важнейшие математические методы представлены в виде некоторых укрупненных группировок:
Линейное программирование – линейное преобразование переменных в системах линейных уравнений. Сюда следует отнести: симплекс-метод, распределительный метод, метод разрешающих множителей, статический матричный метод решения материальных балансов.
Дискретное программирование представлено двумя классами методов: локализационные и комбинаторные методы. К локализационным относятся методы линейного целочисленного программирования. К комбинаторным – метод ветвей и границ, который используется для построения графиков производства и т.п.
Математическая статистика применяется для корреляционного, регрессионного и дисперсионного анализов различных явлений и процессов. Корреляционный анализ применяется для установления тесноты связи между двумя или более стохастически независимыми явлениями или процессами.
Регрессионный анализ устанавливает зависимость случайной величины от неслучайного аргумента. Дисперсионный анализ используется для установления зависимости результатов наблюдений от одного или нескольких факторов в целях выявления важнейших. Методы математической статистики используются также для прогностических экономических расчетов.
Динамическое программирование применяется для планирования и анализа экономических процессов во времени. Динамическое программирование представляется в виде многошагового вычислительного процесса с последовательной оптимизацией целевой функции. Сюда следует отнести и имитационное моделирование.
Теория игр представляется рядом методов, использующихся для определения стратегии поведения конфликтующих сторон. Известные методы можно разделить на два класса – точные и приближенные (итеративные). Условно точная игра может, например, реализовываться на основе линейного программирования путем определенного упорядоченного перебора матрицы-игры. Реализация игры на основе приближенных методов имеет несколько вариантов, но каждый из методов основан на аналитическом осмыслении стратегии на каждом шаге (в каждой партии) с целью совершенствования поведения на последующих шагах (в следующих партиях).
Теория массового обслуживания (и родственное ей направление – теория управления запасами) включает большой класс экономических задач, где на основе теории вероятностей оценивается, например, мощность или количество агрегатов, обслуживающих какой-либо производственный процесс, численность ремонтных рабочих, запасы ресурсов и т.п. в зависимости от характера спроса на них. При этом многие задачи управления запасами формализуются как задачи массового обслуживания и алгоритмически представляются как эвристические модели.
Параметрическое программирование является разновидностью линейного программирования, где коэффициенты при переменных линейного функционала, или коэффициенты при переменных системы линейных уравнений, или те и другие коэффициенты зависят от некоторого параметра. К этому направлению может быть отнесен динамический матричный метод решения материальных балансов.
Стохастическое программирование делится на статистическое и динамическое. В статистических задачах исследуемые параметры являются случайными величинами на определенном этапе. В динамических задачах имеют дело со случайными последовательностями. Большинство статистических задач сводится к задачам линейного программирования. Динамические задачи являются предметом так называемого Марковского программирования.
Нелинейное программирование относится к наименее изученному (применительно к экономическим явлениям и процессам) математическому направлению. Большинство изученных численных методов нелинейного программирования посвящено решению задач квадратичного программирования на основе симплекс-метода.
Теория графов – направление математики, где на основе определенной символики представляется формальное (схематическое) описание взаимосвязанности и взаимообусловленности множества работ, ресурсов, затрат и т.п. Набольшее практическое применение получил так называемый сетевой график (сетевой метод). На основе этой формализации с помощью эвристических или математических методов осуществляется исследование выделенного множества на предмет установления оптимального времени производства работ, оптимального распределения запасов и т.п. Одним из методов формализованного исследования является линейное и нелинейное программирование на базе симплекс-метода.