Linear regression mse python

sklearn.metrics .mean_squared_error¶

Defines aggregating of multiple output values. Array-like value defines weights used to average errors.

Returns a full set of errors in case of multioutput input.

Errors of all outputs are averaged with uniform weight.

squared bool, default=True

If True returns MSE value, if False returns RMSE value.

Returns : loss float or ndarray of floats

A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target.

>>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred, squared=False) 0.612. >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) 0.708. >>> mean_squared_error(y_true, y_pred, squared=False) 0.822. >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') array([0.41666667, 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) 0.825. 

Источник

Линейная регрессия. Разбор математики и реализации на python

Тема линейной регресии рассмотрена множество раз в различных источниках, но, как говорится, «нет такой избитой темы, которую нельзя ударить еще раз». В данной статье рассмотрим указанную тему, используя как математические выкладки, так и код python, пытаясь соблюсти баланс на грани простоты и должном уровне для понимания математических основ.

Линейная регрессия представляется из себя регриссионную модель зависимости одной (объясняемой, зависимой) переменной от другой или нескольких других переменных (фактров, регрессоров, независимых переменных) с линейной функцией зависимости. Рассмотрим модель линейной регрессии, при которой зависимая переменная зависит лишь от одного фактора, тогда функция, описывающуя зависимость y от x будет иметь следующий вид:

и задача сводится к нахождению весовых коэффициентов w0 и w1, таких что такая прямая максимально «хорошо» будет описывать исходные данные. Для этого зададим функцию ошибки, минимизация которой обеспечит подбор весов w0 и w1, используя метод наименьших квадратов:

или подставив уравнение модели

Минимизируем функцию ошибки MSE найдя частные производные по w0 и w1

И приравняв их к нулю получим систему уравнений, решение которой обеспечит минимизацию функции потерь MSE.

Раскроем сумму и с учетом того, что -2/n не может равняться нулю, приравняем к нулю вторые множители

Выразим w0 из первого уравнения

Подставив во второе уравнение решим относительно w1

И выразив w1 последнего уравнения получим

Задача решена, однако представленный способ слабо распространим на большое количество фичей, уже при появлении второго признака вывод становится достаточно громоздким, не говоря уже о большем количестве признаков.
Справиться с этой задачей нам поможет матричный способ представления функции потерь и ее минимизация путем дифференцирования и нахождения экстремума в матричном виде.
Предположим, что дана следующая таблица с данными

Для вычисления интерсепта (коэффициента w0) необходимо к таблице добавить столбец слева с фактором f0 все значения которого равны 1 (единичный вектор-столбец). И тогда столбцы f0-f3 (по количеству столбцов не ограничены, можно считать fn) можно выделить в матрицу X, целевую переменную в матрицу-столбец y, а искомые коэффициенты можно представить в виде вектора w.

можно представить в следующем виде

Представим в виде скалярного произведения < >и вычислим производную используя дифференциал

приведем формулу к следующему виду

Поскольку дифференциал разницы равен разнице дифференциалов, дифференциал константы (y) равен нулю и константу (в данном случае матрицу X) можно вынести за знак дифференциала, получим

Используя свойство скалярного произведения перенесем матрицу X справа налево незабыв транспонировать ее

Собственно, то что слева и есть дифференциал, найдем экстремум приравняв его к нулю и решив по параметрам w

раскроем скобки и перенесем значения без w вправо

Домножим слева обе стороны равенства на обратную матрицу произведения транспонированной матрицы X на X для выражения вектора w, тогда получим

Аналитическое решение получено, переходим к реализации на python.

#импорт необходимых библиотек import numpy as np from sklearn.linear_model import LinearRegression #зададим начальные условия f0 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) f1 = np.array([1.1, 2.1, 3.1, 4.4, 5.2, 6.4, 7.1, 8.2, 9.4, 10.5]) f2 = np.array([1.4, 2.3, 3.4, 4.1, 5.5, 6.2, 7.3, 8.4, 9.2, 10.1]) f3 = np.array([1.2, 2.2, 3.4, 4.2, 5.3, 6.2, 7.3, 8.4, 9.2, 10.3]) y = np.array([[1.2], [2.2], [3.3], [4.3], [5.2], [6.3], [7.2], [8.3], [9.3], [10.2]]) w = np.array([np.nan, np.nan, np.nan, np.nan]) X = np.array([f0, f1, f2, f3]).T #рассчитаем коэффициенты используя выведенную формулу coef_matrix = np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y) print(f'Коэффициенты рассчитанные по формуле ') #Коэффициенты рассчитанные по формуле [0.05994939 0.42839296 0.09249473 0.46642055] #проверим расчет используя библиотеку sklearn model = LinearRegression().fit(X, y) coef_sklearn = model.coef_.T coef_sklearn[0] = model.intercept_ print(f'Коэффициенты рассчитанные с использованием библиотеки sklearn ') #Коэффициенты полученные с рассчитанные библиотеки sklearn [0.05994939 0.42839296 0.09249473 0.46642055]

Надеюсь эта статья помогла заглянуть под капот одного из базовых методов машинного обучения — линейной регрессии и станет первой ступенью в этот увлекательный мир: математика машинного обучения.

Источник

Читайте также:  Html скрипт на питоне
Оцените статью