Learning to rank python

Getting started with learning to rank

This is a demonstration of using XGBoost for learning to rank tasks using the MSLR_10k_letor dataset. For more infomation about the dataset, please visit its description page.

This is a two-part demo, the first one contains a basic example of using XGBoost to train on relevance degree, and the second part simulates click data and enable the position debiasing training.

For an overview of learning to rank in XGBoost, please see Learning to Rank .

from __future__ import annotations import argparse import json import os import pickle as pkl import numpy as np import pandas as pd from sklearn.datasets import load_svmlight_file import xgboost as xgb from xgboost.testing.data import RelDataCV, simulate_clicks, sort_ltr_samples def load_mlsr_10k(data_path: str, cache_path: str) -> RelDataCV: """Load the MSLR10k dataset from data_path and cache a pickle object in cache_path. Returns ------- A list of tuples [(X, y, qid), . ]. """ root_path = os.path.expanduser(args.data) cacheroot_path = os.path.expanduser(args.cache) cache_path = os.path.join(cacheroot_path, "MSLR_10K_LETOR.pkl") # Use only the Fold1 for demo: # Train, Valid, Test # , S4, S5 fold = 1 if not os.path.exists(cache_path): fold_path = os.path.join(root_path, f"Foldfold>") train_path = os.path.join(fold_path, "train.txt") valid_path = os.path.join(fold_path, "vali.txt") test_path = os.path.join(fold_path, "test.txt") X_train, y_train, qid_train = load_svmlight_file( train_path, query_id=True, dtype=np.float32 ) y_train = y_train.astype(np.int32) qid_train = qid_train.astype(np.int32) X_valid, y_valid, qid_valid = load_svmlight_file( valid_path, query_id=True, dtype=np.float32 ) y_valid = y_valid.astype(np.int32) qid_valid = qid_valid.astype(np.int32) X_test, y_test, qid_test = load_svmlight_file( test_path, query_id=True, dtype=np.float32 ) y_test = y_test.astype(np.int32) qid_test = qid_test.astype(np.int32) data = RelDataCV( train=(X_train, y_train, qid_train), test=(X_test, y_test, qid_test), max_rel=4, ) with open(cache_path, "wb") as fd: pkl.dump(data, fd) with open(cache_path, "rb") as fd: data = pkl.load(fd) return data def ranking_demo(args: argparse.Namespace) -> None: """Demonstration for learning to rank with relevance degree.""" data = load_mlsr_10k(args.data, args.cache) # Sort data according to query index X_train, y_train, qid_train = data.train sorted_idx = np.argsort(qid_train) X_train = X_train[sorted_idx] y_train = y_train[sorted_idx] qid_train = qid_train[sorted_idx] X_test, y_test, qid_test = data.test sorted_idx = np.argsort(qid_test) X_test = X_test[sorted_idx] y_test = y_test[sorted_idx] qid_test = qid_test[sorted_idx] ranker = xgb.XGBRanker( tree_method="hist", device="cuda", lambdarank_pair_method="topk", lambdarank_num_pair_per_sample=13, eval_metric=["ndcg@1", "ndcg@8"], ) ranker.fit( X_train, y_train, qid=qid_train, eval_set=[(X_test, y_test)], eval_qid=[qid_test], verbose=True, ) def click_data_demo(args: argparse.Namespace) -> None: """Demonstration for learning to rank with click data.""" data = load_mlsr_10k(args.data, args.cache) train, test = simulate_clicks(data) assert test is not None assert train.X.shape[0] == train.click.size assert test.X.shape[0] == test.click.size assert test.score.dtype == np.float32 assert test.click.dtype == np.int32 X_train, clicks_train, y_train, qid_train = sort_ltr_samples( train.X, train.y, train.qid, train.click, train.pos, ) X_test, clicks_test, y_test, qid_test = sort_ltr_samples( test.X, test.y, test.qid, test.click, test.pos, ) class ShowPosition(xgb.callback.TrainingCallback): def after_iteration( self, model: xgb.Booster, epoch: int, evals_log: xgb.callback.TrainingCallback.EvalsLog, ) -> bool: config = json.loads(model.save_config()) ti_plus = np.array(config["learner"]["objective"]["ti+"]) tj_minus = np.array(config["learner"]["objective"]["tj-"]) df = pd.DataFrame("ti+": ti_plus, "tj-": tj_minus>) print(df) return False ranker = xgb.XGBRanker( n_estimators=512, tree_method="hist", device="cuda", learning_rate=0.01, reg_lambda=1.5, subsample=0.8, sampling_method="gradient_based", # LTR specific parameters objective="rank:ndcg", # - Enable bias estimation lambdarank_unbiased=True, # - normalization (1 / (norm + 1)) lambdarank_bias_norm=1, # - Focus on the top 12 documents lambdarank_num_pair_per_sample=12, lambdarank_pair_method="topk", ndcg_exp_gain=True, eval_metric=["ndcg@1", "ndcg@3", "ndcg@5", "ndcg@10"], callbacks=[ShowPosition()], ) ranker.fit( X_train, clicks_train, qid=qid_train, eval_set=[(X_test, y_test), (X_test, clicks_test)], eval_qid=[qid_test, qid_test], verbose=True, ) ranker.predict(X_test) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Demonstration of learning to rank using XGBoost." ) parser.add_argument( "--data", type=str, help="Root directory of the MSLR-WEB10K data.", required=True, ) parser.add_argument( "--cache", type=str, help="Directory for caching processed data.", required=True, ) args = parser.parse_args() ranking_demo(args) click_data_demo(args) 

Total running time of the script: ( 0 minutes 0.000 seconds)

Источник

Читайте также:  Что такое приложение html
Оцените статью