Команда python для округления

Округление чисел

При выполнении различных арифметических операций важно, чтобы результат округлялся правильно. Часто требуется округлять в большую, меньшую сторону, до ближайшего целого или округлить до сотых.

Для этого программист может использовать различные инструменты, такие как встроенная функция round(), преобразование к типу int и функции из подключаемого модуля math.

Способы округления чисел

Для округления чисел придумано много способов, они не лишены недостатков, однако часто используются для решения задач. Разберёмся в тонкостях каждого из них.

Если используется стандартная библиотека math, то в начале кода её необходимо подключить. Сделать это можно, например, с помощью инструкции: import math .

math.ceil() — округление чисел в большую сторону

Функция получила своё имя от термина «ceiling», который используется в математике для описания числа, которое больше или равно заданному.

Любая дробь находится в целочисленном интервале, например, 1.2 лежит между 1 и 2. Функция ceil() определяет, какая из границ интервала наибольшая и записывает её в результат округления.

math.ceil(5.15) # = 6 math.ceil(6.666) # = 7 math.ceil(5) # = 5

Важно помнить, что функция определяет наибольшее число с учётом знака. То есть результатом округления числа -0.9 будет 0, а не -1.

math.floor() — округление чисел в меньшую сторону

Функция округляет дробное число до ближайшего целого, которое меньше или равно исходному. Работает аналогично функции ceil() , но с округлением в противоположную сторону.

math.floor(7.9) # = 7 math.floor(9.999) # = 9 math.floor(-6.1) # = -7

math.trunc() — отбрасывание дробной части

Возвращает целое число, не учитывая его дробную часть. То есть никакого округления не происходит, Python просто забывает о дробной части, приводя число к целочисленному виду.

math.trunc(5.51) # = 5 math.trunc(-6.99) # = -6

Избавиться от дробной части можно с помощью обычного преобразования числа к типу int. Такой способ полностью эквивалентен использованию trunc() .

Нормальное округление

Python позволяет реализовать нормальное арифметическое округление, использовав функцию преобразования к типу int.

И хотя int() работает по другому алгоритму, результат её использования для положительных чисел полностью аналогичен выводу функции floor(), которая округляет числа «вниз». Для отрицательных аналогичен функции ceil().

math.floor(9.999) # = 9 int(9.999) # = 9 math.ceil(-9.999) # = -9 int(-9.999) # = -9

Чтобы с помощью функции int() округлить число по математическим правилам, необходимо добавить к нему 0.5, если оно положительное, и -0.5, если оно отрицательное.

Тогда операция принимает такой вид: int(num + (0.5 if num > 0 else -0.5)). Чтобы каждый раз не писать условие, удобно сделать отдельную функцию:

def int_r(num): num = int(num + (0.5 if num > 0 else -0.5)) return num

Функция работает также, как стандартная функция округление во второй версии Python (арифметическое округление).

int_r(11.5) # = 12 int_r(11.4) # = 11 int_r(-0.991) # = -1 int_r(1.391) # = 1

round() — округление чисел

round() — стандартная функция округления в языке Python. Она не всегда работает так, как ожидается, а её алгоритм различается в разных версиях Python.

В Python 2

Во второй версии Python используется арифметическое округление. Оно обладает постоянно растущей погрешностью, что приводит к появлению неточностей и ошибок.

Увеличение погрешности вызвано неравным количеством цифр, определяющих, в какую сторону округлять. Всего 4 цифры на конце приводят к округлению «вниз», и 5 цифр к округлению «вверх».

Помимо этого, могут быть неточности, например, если округлить число 2.675 до второго знака, получится число 2.67 вместо 2.68. Это происходит из-за невозможности точно представить десятичные числа типа «float» в двоичном коде.

В Python 3

В третьей версии Python используется банковское округление. Это значит, что округление происходит до самого близкого чётного.

Такой подход не избавляет от ошибок полностью, но уменьшает шанс их возникновения и позволяет программисту добиться большей точности при вычислениях.

round(3.5) # = 4 round(9.5) # = 10 round(6.5) # = 6 round(-6.5) # = -6 round(-7.5) # = -8

Но если вам по каким то причинам нужно округление как в Python 2, то можно воспользоваться функцией написанной нами выше на основе приведения к целому числу.

Округление до сотых

У функции raund() есть ещё один аргумент. Он показывает до какого количества знаков после запятой следует округлять. Таким образом, если нам надо в Python округлить до сотых, этому параметру следует задать значение 2.

Пример округления до нужного знака:

round(3.555, 2) # = 3.56 round(9.515,1) # = 9.5 round(6.657,2) # = 6.66

Ошибки округления и модуль decimal

При округлении функцией round(), можно получить следующее:

round(2.65, 1) # = 2.6 round(2.85, 1) # = 2.9

Почему в одном случае округляется вниз, а в другом вверх? При переводе 2.85 в двоичную систему получается число, которое немного больше. Поэтому функция видит не «5», а «>5» и округляет вверх.

Проблему неточного представления чисел отлично иллюстрирует пример:

print (0.1 + 0.1 + 0.1) 0.30000000000000004

Из-за подобных ошибок числа типа «float» нельзя использовать там, где изменения значения на одну тысячную может привести к неверному результату. Решить данную проблему поможет модуль decimal.

decimal — модуль, позволяющий округлять десятичные дроби с почти 100% точностью. Его основной принцип: компьютер должен считать так, как считает человек. Речь идёт не о скорости вычисления, а о точности и отсутствии проблем неправильного представления чисел.

Источник

Round Python. Округление

Основы

Введение в тему

Зачастую при вычислениях, а их в работе программиста не мало, мы сталкиваемся с задачами округления. Округлять можно по разному: вверх, вниз и с разной степенью точности. В языке Пайтон для выполнения этого класса задач предусмотрено несколько доступных инструментов: функции round(), int(), а так же модуль math. Но, есть и подводные камни. Обо всём этом Вы узнаете из данного урока.

Встроенные функции

Начнём с рассмотрения встроенных функций: round и int. Что означает «встроенные»? Всё просто: чтобы их использовать не надо ничего подключать или импортировать – просто пишете имя функции и она уже готова к бою.

Round

Функция round – округляет число до необходимой точности (заданного количества знаков после запятой).

Точность является не обязательным параметром и, если её не задать, то Python округлит число, указанное в скобках, до ближайшего целого числа:

 
результат_округления = round(3.14) print(результат_округления) # Вывод: 3 результат_округления = round(3.94) print(результат_округления) # Вывод: 4 import math результат_округления = round(math.pi, 5) print(результат_округления) # Вывод: 3.14159

Со школы многие привыкли, что, когда (N + 1) знак = 5, а последующие знаки равны нулю, округление производится всегда в большую по модулю сторону.

Если дробная часть равна 0,5, то результатом округления будет ближайшее четное число.

При округлении функцией round(), можно получить следующее:

Источник

Округление в Python — round, int, модуль math

При выполнении ряда арифметических операций пользователю нужно следовать правилам округления. Преобразовывать нужно в большую или меньшую сторону, до целого значения или до сотых.

В Python для округления доступны функции round() , int() и модуль math . Последний дополнительно импортируется.

Встроенные функции

Для операции округления в Python есть встроенные функции — round() и int()

round

round(number[, ndigits]) — округляет число (number) до ndigits знаков после запятой. Это стандартная функция, которая для выполнения не требует подключения модуля math.

По умолчанию операция проводится до нуля знаков — до ближайшего целого числа. Например:

round(3.5) > 4 round(3.75, 1) > 3.8

Чтобы получить целый показатель, результат преобразовывают в int .

Синтаксически функция вызывается двумя способами.

  1. round(x) — это округление числа до целого, которое расположено ближе всего. Если дробная часть равна 0,5, то округляют до ближайшего четного значения.
  2. round(x, n) — данные х округляют до n знаков после точки. Если округление проходит до сотых, то n равен "2", если до тысячных — "3" и т.д.

int

int — встроенная функция, не требующая подключения дополнительных модулей. Её функция — преобразование действительных значений к целому путем округления в сторону нуля. Например:

Для положительных чисел функция int аналогична функции math.floor() , а для отрицательных — аналогично math.ceil() . Например:

import math math.floor(3.999) > 3 math.ceil(3.999) > 4

💡 Чтобы число по int преобразовать по математическим правилам, нужно выполнить следующие действия.

Синтаксически преобразование оформляется так:

num = 5.77 int(num + (0.5 if num > 0 else -0.5)) > 6

Функции из библиотеки Math

Модуль необходим в Python. Он предоставляет пользователю широкий функционал работы с числами. Для обработки алгоритмов сначала проводят импорт модуля.

math.ceil

Функция преобразовывает значение в большую сторону (вверх). Этот термин применяется и в математике. Он означает число, которое равно или больше заданного.

Любая дробь находится между двумя целыми числами. Например, 2.3 лежит между 2 и 3. Функция ceil() определяет большую сторону и возводит к нему результат преобразования. Например:

import math math.ceil(3.25) > 4

Алгоритм определяет большую границу интервала с учетом знака:

import math math.ceil(-3.25) > -3

math.floor

math.floor() действует противоположно math.ceil() — округляет дробное значение до ближайшего целого, которое меньше или равно исходному. Округление происходит в меньшую сторону (вниз):

import math math.floor(3.9) > 3 math.floor(-2.1) > -3

При округлении учитывается знак перед данными.

math.trunc

Функция характеризуется отбрасыванием дробной части. После преобразования получается целое значение без учета дроби. Такой алгоритм не является округлением в арифметическом смысле. В Пайтон просто игнорируется дробь независимо от ее значения:

import math math.trunc(7.11) > 7 math.trunc(-2.1) -2

💡 Избавиться от дроби можно без подключения модуля. Для этого есть стандартная функция int Она преобразовывает дробные числа в целые путем игнорирования дроби.

Различие округления в Python 2 и Python 3

В Python 2 и Python 3 реализованы разные принципы округления.

В Python 2 используется арифметическое округление. В нем наблюдается большое количество погрешностей, что приводит к неточностям в процессе вычислений.

Во втором Python есть только 4 цифры, которые ведут к преобразованию к меньшему значению — 1, 2, 3 и 4. Также 5 цифр, которые приводят к большему значению — 5, 6, 7, 8, 9. Такое неравное распределение ведет к тому, что погрешность постоянно нарастает.

Python 2 по правилам арифметического округления преобразует число 5,685 в 5,68 до второго знака. Такая погрешность связана с тем, что десятичные цифры float в двоичном коде невозможно корректно представить.

В Python 3 используются принципы банковского округления. Это означает, что преобразование производится к ближайшему четному. В таком случае также не удается полностью избежать возникающих ошибок, но программисты добиваются точности в подсчетах.

2,5 по правилам банковского преобразования будет равно 2, а 3,5 = 4 (значения возводятся к близкому четному). Минимизировать погрешности можно благодаря практически равной вероятности, что перед пятеркой будет четное или нечетное число.

Источник

Читайте также:  Удалить строки датафрейма python
Оцените статью