Пример решения задачи множественной регрессии с помощью Python
Добрый день, уважаемые читатели.
В прошлых статьях, на практических примерах, мной были показаны способы решения задач классификации (задача кредитного скоринга) и основ анализа текстовой информации (задача о паспортах). Сегодня же мне бы хотелось коснуться другого класса задач, а именно восстановления регрессии. Задачи данного класса, как правило, используются при прогнозировании.
Для примера решения задачи прогнозирования, я взял набор данных Energy efficiency из крупнейшего репозитория UCI. В качестве инструментов по традиции будем использовать Python c аналитическими пакетами pandas и scikit-learn.
Описание набора данных и постановка задачи
Дан набор данных, котором описаны следующие атрибуты помещения:
Поле | Описание | Тип |
---|---|---|
X1 | Относительная компактность | FLOAT |
X2 | Площадь | FLOAT |
X3 | Площадь стены | FLOAT |
X4 | Площадь потолка | FLOAT |
X5 | Общая высота | FLOAT |
X6 | Ориентация | INT |
X7 | Площадь остекления | FLOAT |
X8 | Распределенная площадь остекления | INT |
y1 | Нагрузка при обогреве | FLOAT |
y2 | Нагрузка при охлаждении | FLOAT |
В нем — характеристики помещения на основании которых будет проводиться анализ, а — значения нагрузки, которые надо спрогнозировать.
Предварительный анализ данных
Для начала загрузим наши данные и посмотрим на них:
from pandas import read_csv, DataFrame from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import r2_score from sklearn.cross_validation import train_test_split dataset = read_csv('EnergyEfficiency/ENB2012_data.csv',';') dataset.head()
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | Y1 | Y2 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.98 | 514.5 | 294.0 | 110.25 | 7 | 2 | 0 | 0 | 15.55 | 21.33 |
1 | 0.98 | 514.5 | 294.0 | 110.25 | 7 | 3 | 0 | 0 | 15.55 | 21.33 |
2 | 0.98 | 514.5 | 294.0 | 110.25 | 7 | 4 | 0 | 0 | 15.55 | 21.33 |
3 | 0.98 | 514.5 | 294.0 | 110.25 | 7 | 5 | 0 | 0 | 15.55 | 21.33 |
4 | 0.90 | 563.5 | 318.5 | 122.50 | 7 | 2 | 0 | 0 | 20.84 | 28.28 |
Теперь давайте посмотрим не связаны ли между собой какие-либо атрибуты. Сделать это можно рассчитав коэффициенты корреляции для всех столбцов. Как это сделать было описано в предыдущей статье:
dataset = dataset.drop(['X1','X4'], axis=1) dataset.head()
Помимо этого, можно заметить, что поля Y1 и Y2 очень тесно коррелируют между собой. Но, т. к. нам надо спрогнозировать оба значения мы их оставляем «как есть».
Выбор модели
Отделим от нашей выборки прогнозные значения:
trg = dataset[['Y1','Y2']] trn = dataset.drop(['Y1','Y2'], axis=1)
, где — условная дисперсия зависимой величины у по фактору х.
Коэффициент принимает значение на промежутке и чем он ближе к 1 тем сильнее зависимость.
Ну что же теперь можно перейти непосредственно к построению модели и выбору модели. Давайте поместим все наши модели в один список для удобства дальнейшего анализа:
models = [LinearRegression(), # метод наименьших квадратов RandomForestRegressor(n_estimators=100, max_features ='sqrt'), # случайный лес KNeighborsRegressor(n_neighbors=6), # метод ближайших соседей SVR(kernel='linear'), # метод опорных векторов с линейным ядром LogisticRegression() # логистическая регрессия ]
Итак модели готовы, теперь мы разобьем наши исходные данные на 2 подвыборки: тестовую и обучающую. Кто читал мои предыдущие статьи знает, что сделать это можно с помощью функции train_test_split() из пакета scikit-learn:
Xtrn, Xtest, Ytrn, Ytest = train_test_split(trn, trg, test_size=0.4)
Теперь, т. к. нам надо спрогнозировать 2 параметра , надо построить регрессию для каждого из них. Кроме этого, для дальнейшего анализа, можно записать полученные результаты во временный DataFrame. Сделать это можно так:
#создаем временные структуры TestModels = DataFrame() tmp = <> #для каждой модели из списка for model in models: #получаем имя модели m = str(model) tmp['Model'] = m[:m.index('(')] #для каждого столбцам результирующего набора for i in xrange(Ytrn.shape[1]): #обучаем модель model.fit(Xtrn, Ytrn[:,i]) #вычисляем коэффициент детерминации tmp['R2_Y%s'%str(i+1)] = r2_score(Ytest[:,0], model.predict(Xtest)) #записываем данные и итоговый DataFrame TestModels = TestModels.append([tmp]) #делаем индекс по названию модели TestModels.set_index('Model', inplace=True)
Как можно заметить из кода выше, для расчета коэффициента используется функция r2_score().
Итак, данные для анализа получены. Давайте теперь построим графики и посмотрим какая модель показала лучший результат:
fig, axes = plt.subplots(ncols=2, figsize=(10,4)) TestModels.R2_Y1.plot(ax=axes[0], kind='bar', title='R2_Y1') TestModels.R2_Y2.plot(ax=axes[1], kind='bar', color='green', title='R2_Y2')
Анализ результатов и выводы
Из графиков, приведенных выше, можно сделать вывод, что лучше других с задачей справился метод RandomForest (случайный лес). Его коэффициенты детерминации выше остальных по обоим переменным:
ля дальнейшего анализа давайте заново обучим нашу модель:
model = models[1] model.fit(Xtrn, Ytrn)
При внимательном рассмотрении, может возникнуть вопрос, почему в предыдущий раз и делили зависимую выборку Ytrn на переменные(по столбцам), а теперь мы этого не делаем.
Дело в том, что некоторые методы, такие как RandomForestRegressor, может работать с несколькими прогнозируемыми переменными, а другие (например SVR) могут работать только с одной переменной. Поэтому на при предыдущем обучении мы использовали разбиение по столбцам, чтобы избежать ошибки в процессе построения некоторых моделей.
Выбрать модель это, конечно же, хорошо, но еще неплохо бы обладать информацией, как каждый фактор влиет на прогнозное значение. Для этого у модели есть свойство feature_importances_.
С помощью него, можно посмотреть вес каждого фактора в итоговой моделей:
model.feature_importances_
array([ 0.40717901, 0.11394948, 0.34984766, 0.00751686, 0.09158358,
0.02992342])
В нашем случае видно, что больше всего на нагрузку при обогреве и охлаждении влияют общая высота и площадь. Их общий вклад в прогнозной модели около 72%.
Также необходимо отметить, что по вышеуказанной схеме можно посмотреть влияние каждого фактора отдельно на обогрев и отдельно на охлаждение, но т. к. эти факторы у нас очень тесно коррелируют между собой (), мы сделали общий вывод по ним обоим который и был написан выше.
Заключение
В статье я постарался показать основные этапы при регрессионном анализе данных с помощью Python и аналитческих пакетов pandas и scikit-learn.
Необходимо отметить, что набор данных специально выбирался таким образом чтобы быть максимально формализованым и первичная обработка входных данных была бы минимальна. На мой взгляд статья будет полезна тем, кто только начинает свой путь в анализе данных, а также тем кто имеет хорошую теоретическую базу, но выбирает инструментарий для работы.