Канонической задаче линейного программирования

Переход к канонической форме ЗЛП

Каноническая форма ЗЛП — задача линейного программирования вида ax = b , где a — матрица коэффициентов, b — вектор ограничений.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Математическая модель ЗЛП называется основной, если ограничения в ней представлены в виде уравнений при условии неотрицательности переменных.

Математическая модель называется канонической, если ее система ограничений представлена в виде системы m линейно независимых уравнений (ранг системы r=m), в системе выделен единичный базис, определены свободные переменные и целевая функция выражена через свободные переменные. При этом правые части уравнений неотрицательны (bi ≥ 0).

Переменные, входящие в одно из уравнений системы с коэффициентом один и отсутствующие в других уравнениях называются базисными неизвестными, а все другие – свободными.

Решение системы называется базисным, если в нем свободные переменные равны 0, и оно имеет вид:
Xбаз = (0, 0; b1, …, bm), f(Xбаз) = c0

Базисное решение является угловой точкой множества решений системы, т.е. определяет вершину многоугольника решений модели. Среди таких решений находится и то, при котором целевая функция принимает оптимальное значение.

Базисное решение называется опорным, если оно допустимо, т.е. все правые части уравнений системы (или неравенств) положительны bi ≥ 0.

Компактная форма канонической модели имеет вид:
AX = b
X ≥ 0
Z = CX(max)

Понятие допустимого решения, области допустимых решений, оптимального решения задачи линейного программирования.
Определение 1 . Вектор X, удовлетворяющий системе ограничений ЗЛП, в том числе и условиям неотрицательности, если они имеются, называется допустимым решением ЗЛП.
Определение 2 . Совокупность всех допустимых решений образует область допустимых решений (ОДР) ЗЛП.
Определение 3 . Допустимое решение, для которого целевая функция достигает максимума (или минимума), называется оптимальным решением.

  • эти значения удовлетворяли некоторой системе линейных уравнений или неравенств;
  • при этих значениях целевая функция обращалась бы в минимум или максимум.
  • неравенства, входящие в систему ограничений задачи, преобразовать в уравнения с помощью введения дополнительных переменных;
  • если целевая функция F→max (максимизируется), она заменяется на функцию –F→ min (которая минимизируется).

Пример №1 . Следующую задачу ЛП привести к каноническому виду: F(X) = 5x1 + 3x2 → max при ограничениях:
2x1 + 3x2≤20
3x1 + x2≤15
4x1≤16
3x2≤12
Модель записана в стандартной форме. Введем балансовые неотрицательные переменные x3, x4, x5, x6, которые прибавим к левым частям ограничений-неравенств. В целевую функцию все дополнительные переменные введем с коэффициентами, равными нулю:
В первом неравенстве смысла (≤) вводим базисную переменную x3. Во 2-ом неравенстве смысла (≤) вводим базисную переменную x4. В третьем неравенстве вводим базисную переменную x5. В 4-м неравенстве — базисную переменную x6. Получим каноническую форму модели:
2x1 + 3x2 + 1x3 + 0x4 + 0x5 + 0x6 = 20
3x1 + 1x2 + 0x3 + 1x4 + 0x5 + 0x6 = 15
4x1 + 0x2 + 0x3 + 0x4 + 1x5 + 0x6 = 16
0x1 + 3x2 + 0x3 + 0x4 + 0x5 + 1x6 = 12
F(X) = 5x1 + 3x2 + 0x3 + 0x4 + 0x5 + 0x6 → max Пример №2 . Найти два опорных решения системы
x1 + 2x4 – 2x5 = 4
x3 + 3x4 + x5 = 5
x2 + 3x5 = 2 Ответ: X = (4;2;5;0;0) Пример №3 . Привести к канонической форме следующую ЗЛП.
F = 2x1 — x2 + 4x3 -2x4 → min
при ограничениях:
7x1 –x2 +5x3 + x4 = -10
3x1 +5x2 -9x3 + 2x4 = 6
x1 –x2 -2x3 + 6x4 ≥ 7
x1 +x2 -5x3 ≤ 11
7x1 –x2 -3x3 — x4 ≤ 9
x1 ≥0 , x2 ≥0 (обратите внимание, что переменные x3 и x4 имеют произвольный знак) Для приведения ЗЛП к канонической форме необходимо:
1. Поменять знак у целевой функции
— F = -2x1 + x2 — 4x3 +2x4 → max 2. В левые части трех последних неравенств внести дополнительные переменные x5, x6, x7 со знаком плюс или минус в зависимости от знака неравенства.
7x1 –x2 +5x3 + x4 = -10
3x1 +5x2 -9x3 + 2x4 = 6
x1 –x2 -2x3 + 6x4 –x5 = 7
x1 +x2 -5x3 +x6 = 11
7x1 –x2 -3x3 — x4 +x7 = 9
x1 ≥0 , x2 ≥0, x5 ≥0 , x6 ≥0, x7 ≥0 3. Так как переменные x3 и x4 произвольного знака, то они заменяются разностями неотрицательных переменных.
7x1 –x2 +5(x8 – x9) + (x10 – x11) = -10
3x1 +5x2 -9(x8 – x9) + 2(x10 – x11) = 6
x1 –x2 -2(x8 – x9) + 6(x10 – x11) –x5 = 7
x1 +x2 -5(x8 – x9) +x6 = 11
7x1 –x2 -3(x8 – x9) — (x10 – x11) +x7 = 9
x1 ≥0 , x2 ≥0, x5 ≥0 , x6 ≥0, x7 ≥0 , x8 ≥0, x9 ≥0 , x10 ≥0, x11 ≥0 4. Соответствующая целевая функция примет вид:
— F = -2x1 + x2 — 4(x8 – x9) +2(x10 – x11) → max см. также Как привести каноническую задачу линейного программирования к стандартной форме Пример №2 . Преобразовать следующие задачи ЛП к канонической форме и решить их симплекс-методом.

Источник

4.1. Каноническая форма задачи линейного программирования

Запись целевой функции и системы ограничений в различных задачах линейного программирования неодинаков: в одних задачах требуется найти минимум целевой функции, а в других – максимум; в одних случаях искомые переменные зависят от одного индекса, а в других – от двух; в одних задачах ограничения заданы в виде системы линейных неравенств, а в других – в виде системы линейных уравнений. На практике возможны также задачи, в которых часть ограничений имеет вид линейных неравенств, а часть – линейных уравнений. Также не во всех задачах может требоваться неотрицательность переменных .

Учет такого разнообразия задач линейного программирования требует разработки специальных методов для решения отдельных их классов. Мы же сосредоточим свое внимание на изучении общих свойств и методов линейного программирования, записанных в так называемой канонической форме.

Если в задаче линейного программирования система исходных ограничений приобретает вид уравнений типа

или

и нужно найти максимум линейной целевой функции

,

то считается, что задача линейного программирования записана в канонической форме.

Любую задачу линейного программирования можно легко свести к канонической форме. В общем случае для этого достаточно уметь, во-первых, свести задачу минимизации целевой функции к задаче ее максимизации, во-вторых, переходить от ограничений-неравенств к ограничениям-равенствам, и в-третьих, менять те переменные, которые не подчинены условию неотрицательности.

В том случае, когда нужно найти минимум функции , можно перейти к нахождению максимума функции , поскольку справедливо утверждение: .

Ограничение-неравенство исходной задачи, которое имеет вид «» , можно превратить в ограничение-уравнение путем добавления к его левой части дополнительной неотрицательной переменной, а ограничение-неравенство вида «»– путем вычитания из его левой части дополнительной неотрицательной переменной.

Заметим, что количество введенных дополнительных неотрицательных переменных всегда равно количеству неравенств в исходной системе ограничений.

Введены дополнительные переменные имеют вполне конкретный экономический смысл. Так, если в ограничениях исходной задачи линейного программирования отражаются расходы и наличие производственных ресурсов, то числовое значение дополнительной переменной показывает объем соответствующего неиспользованного ресурса.

Отметим также, что если некоторая переменная не подчиняется условию неотрицательности, то ее нужно заменить двумя неотрицавтельными переменными и , приняв .

Пример. Записать в канонической форме следующую задачу линейной оптимизации: найти минимум функции при ограничениях

В данной задаче нужно найти минимум целевой функции, а система ограничений включает четыре неравенства. Для того, чтобы записать ее в канонической форме, нужно перейти от ограничений-неравенств к ограничениям-уравнениям, а также превратить целевую функцию.

Так как количество неравенств, входящих в систему ограничений задачи , равно четырем, то этот переход должен быть осуществлен с введением четырех дополнительных неотрицательных переменных. При этом во втором и четвертом неравенствах стоит знак «» , поэтому к их левой части дополнительные переменные добавляем. В первом и третьем неравенствах – знак «», значит от их левой части дополнительные переменные вычитаем.

Также превращаем целевую функцию, поменяв все знаки на противоположные, и находим ее максимум.

Таким образом, данная задача линейного программирования будет записана в следующем каноническом виде:

найти максимум функции

при ограничениях

Источник

Определение задачи линейного программирования (злп), общая, симметричная и каноническая формы записи задачи линейного программирования

,

называется общей задачей линейного программирования (ЗЛП).

Задача в краткой записи имеет вид

,

Определение 2. Задача, в которой требуется найти экстремум функции

,

называется задачей линейного программирования, заданной в канонической форме.

Определение 3. Задача, в которой требуется найти экстремум функции

,

называется задачей линейного программирования заданной в симметричной форме записи.

Определение 4. Функция

называется целевой функцией ЗЛП.

Определение 5. Совокупность чисел удовлетворяющая ограничениям ЗЛП, называется допустимым решением ЗЛП.

Определение 6. Допустимое решение, при котором целевая функция принимает максимальное (минимальное) значение, называется оптимальным решением ЗЛП.

Переход от одной формы злп к другой

Переход от неканонической формы ЗЛП к канонической.

Теорема 1. Каждому решению неравенства соответствует единственное решение уравнения и неравенства , и наоборот.

Из теоремы следует, что неравенство можно заменить уравнением и неравенством .

Переменную называют балансовой переменной.

Следовательно, чтобы привести задачу к каноническому виду, нужно заменить каждое неравенство системы ограничений соответствующим уравнением и неравенством , введя в каждое неравенство балансовую переменную с коэффициентом +1, если знак неравенства £, и с коэффициентом -1, если знак неравенства ³. В целевую функцию балансовые переменные вводятся с нулевыми коэффициентами.

Если на переменную не наложено условие на неотрицательность, то эту переменную надо представить в виде разности двух неотрицательных переменных: , где

Переход от канонической формы ЗЛП к симметричной форме.

Чтобы перейти от канонической формы ЗЛП к симметричной, нужно найти общее решение системы уравнений:

Так как все переменные должны быть неотрицательными, в том числе и базисные, получим систему неравенств:

Чтобы исключить базисные переменные из целевой функции, необходимо в целевую функцию вместо базисных переменных подставить их выражения через свободные переменные.

Пример 1. Дана ЗЛП: найти наибольшее значение функции при ограничениях:

.

Приведем ее к каноническому виду.

Канонический вид задачи: найти наибольшее значение функции при ограничениях:

.

Пример 2. Перейти от канонического вида задачи к симметричному. Найти наибольшее значение функции при ограничениях:

.

Разрешим систему относительно произвольного базиса, система примет вид

И так как , отбросив базисные переменные, получим систему неравенств

Выразим целевую функцию через свободные переменные:

Симметричный вид задачи: найти наибольшее значение функции при ограничениях:

.

Математические модели экономических задач Задача об оптимальном использовании ресурсов

Предприятие может выпускать определенные виды продукции, используя для этого различные виды ресурсов. Известны затраты каждого вида ресурса на производство единицы каждого вида продукции и прибыль от реализации единицы каждого вида продукции. Требуется составить план выпуска продукции, чтобы при данных запасах ресурсов получить максимальную прибыль.

Составим математическую модель данной задачи.

i — номер i-го вида ресурса, ;

bi — запасы i-го вида ресурса, ;

j — номер j-го вида продукции, ;

aij — затраты i-го вида ресурса на производство единицы j-го вида продукции;

cj — прибыль от реализации единицы j-го вида продукции.

Все данные занесем в таблицу:

1 2 … j n

Источник

Читайте также:  Решения простых задач линейного программирования
Оцените статью