Нельзя так просто взять и вычислить абсолютное значение
Кажется, задача вычисления абсолютного значения (или модуля) числа совершенно тривиальна. Если число отрицательно, давайте сменим знак. Иначе оставим как есть. На Java это будет выглядеть примерно так:
public static double abs(double value) < if (value < 0) < return -value; >return value; >
Вроде бы это слишком просто даже для вопроса на собеседовании на позицию джуна. Есть ли тут подводные камни?
Вспомним, что в стандарте IEEE-754 вообще и в Java в частности есть два нуля: +0.0 и -0.0. Это такие братья-близнецы, их очень легко смешать и перепутать, но вообще-то они разные. Разница проявляется не только в текстовом представлении, но и в результате выполнения некоторых операций. Например, если поделить единицу на +0.0 и -0.0, то мы получим кардинально разные ответы: +Infinity и -Infinity, отличие между которыми уже сложно игнорировать. Однако, например, в операциях сравнения +0.0 и -0.0 неразличимы. Поэтому реализация выше не убирает минус у -0.0. Это может привести к неожиданным результатам. Например:
Казалось бы, обратное к модулю x число не может быть отрицательным, какое бы ни было x . Но в данном случае может. Если у вас есть садистские наклонности, попросите джуна на собеседовании написать метод abs . Когда же он выдаст код вроде того что в начале статьи, можете спросить, выполнится ли при каком-нибудь x условие 1 / abs(x) < 0 . После таких собеседований про вашу компанию будут ходить легенды.
public static double abs(double value) < if (value < 0 || Double.compare(value, -0.0) == 0) < return -value; >return value; >
Это работает. Но метод становится ужасно медленным для такой тривиальной операции. Double.compare устроен не так уж просто, нам потребуется пара дополнительных сравнений для положительного числа, три сравнения для -0.0 и целых четыре сравнения для +0.0. Если посмотреть на реализацию Double.compare , можно понять, что нам нужна только часть связанная с doubleToLongBits . Этот метод реинтерпретирует битовое представление double -числа как битовое представление long -числа (и там, и там восемь байт). А со сравнением целых чисел никаких сюрпризов нет. Поэтому можно упростить так:
private static final long MINUS_ZERO_LONG_BITS = Double.doubleToLongBits(-0.0); public static double abs(double value) < if (value < 0 || Double.doubleToLongBits(value) == MINUS_ZERO_LONG_BITS) < return -value; >return value; >
Однако, оказывается, doubleToLongBits тоже не совсем тривиален, потому что он канонизирует NaN’ы. Есть много способов закодировать not-a-number в виде double , но только один из них канонический. Эти разные NaN’ы совсем-совсем близнецы, их не отличишь ни сравнением через Double.compare , никакой операцией, ни строковым представлением. Но в памяти компьютера они выглядят по-разному. Чтобы не было сюрпризов, doubleToLongBits приводит любой NaN к каноническому виду, который записывается в long как 0x7ff8000000000000L . Конечно, это лишние проверки, которые нам здесь тоже не нужны.
Что же делать? Оказывается, можно использовать doubleToRawLongBits , который никаких умностей с NaN ‘ами не делает и возвращает всё как есть:
private static final long MINUS_ZERO_LONG_BITS = Double.doubleToRawLongBits(-0.0); public static double abs(double value) < if (value < 0 || Double.doubleToRawLongBits(value) == MINUS_ZERO_LONG_BITS) < return -value; >return value; >
Этот метод JIT-компилятор в идеале может вообще удалить полностью, потому что речь идёт просто про реинтерпретацию набора бит в процессоре, чтобы типы данных сошлись. А сами биты остаются одни и те же и процессору обычно наплевать на типы данных. Хотя говорят, что всё-таки это может привести к пересылке из регистра с плавающей точкой в регистр общего назначения. Но всё равно очень быстро.
Ладно, у нас осталось два ветвления для всех положительных чисел и нулей. Всё равно кажется, что много. Мы знаем, что ветвления — это плохо, если branch predictor не угадает, они могут очень дорого стоить. Можно ли сделать меньше? Оказывается, можно любой нуль превратить в положительный, если вычесть его из 0.0 :
System.out.println(0.0-(-0.0)); // 0.0 System.out.println(0.0-(+0.0)); // 0.0
Таким образом, можно написать:
public static double abs(double value) < if (value == 0) < return 0.0 - value; >if (value < 0) < return -value; >return value; >
Зачем так сложно, спросите вы. Ведь можно просто вернуть 0.0 в первом условии. Кроме того, у нас всё равно два сравнения. Однако можно заметить, что для обычных отрицательных чисел 0.0 — value и просто -value дают одинаковый результат. Поэтому первые две ветки легко схлопнуть в одну:
public static double abs(double value) < if (value return value; >
Отлично, у нас теперь всегда одна ветка. Победа? Но как насчёт сделать всегда ноль веток? Возможно ли это?
Если посмотреть на представление числа double в стандарте IEEE-754, можно заметить, что знак — это просто старший бит. Соответственно, нам нужно просто безусловно сбросить этот старший бит. Остальная часть числа при выполнении этой операции не меняется. В этом плане дробные числа даже проще целых, где отрицательные превращаются в положительные через двоичное дополнение. Сбросить старший бит можно через операцию & с правильной маской. Но для этого надо интерпретировать дробное число как целое (и мы уже знаем как это сделать), а потом интерпретировать назад (для этого есть longBitsToDouble , и он тоже практически бесплатный):
public static double abs(double value)
Этот способ действительно не содержит ветвлений, и профилирование показывает, что пропускная способность метода при определённых условиях увеличивается процентов на 10%. Предыдущая реализация с одним ветвлением была в стандартной библиотеке Java с незапамятных времён, а вот в грядущей Java 18 уже закоммитили улучшенную версию.
В ряде случаев, впрочем, эти улучшения ничего не значат, потому что JIT-компилятор может использовать соответствующую ассемблерную инструкцию при её наличии и полностью проигнорировать Java-код. Например, на платформе ARM используется инструкция VABS. Так что пользы тут мало. Но всё равно интересная статья получилась!
13.7. Java – Метод Math.abs()
Метод Math.abs() – дает абсолютное значение аргумента, простыми словами – мы получаем модуль числа. Аргумент может быть int, float, long, double, short, byte.
Синтаксис
Варианты метода приведены ниже:
double abs(double d) float abs(float f) int abs(int i) long abs(long lng)
Параметры
Подробная информация о параметрах:
Возвращаемое значение
Пример
Получим следующий результат:
Оглавление
- 1. Java – Самоучитель для начинающих
- 2. Java – Обзор языка
- 3. Java – Установка и настройка
- 4. Java – Синтаксис
- 5. Java – Классы и объекты
- 6. Java – Конструкторы
- 7. Java – Типы данных и литералы
- 8. Java – Типы переменных
- 9. Java – Модификаторы
- 10. Java – Операторы
- 11. Java – Циклы и операторы цикла
- 11.1. Java – Цикл while
- 11.2. Java – Цикл for
- 11.3. Java – Улучшенный цикл for
- 11.4. Java – Цикл do..while
- 11.5. Java – Оператор break
- 11.6. Java – Оператор continue
- 12. Java – Операторы принятия решений
- 12.1. Java – Оператор if
- 12.2. Java – Оператор if..else
- 12.3. Java – Вложенный оператор if
- 12.4. Java – Оператор switch..case
- 12.5. Java – Условный оператор (? 🙂
- 13. Java – Числа
- 13.1. Java – Методы byteValue(), shortValue(), intValue(), longValue(), floatValue(), doubleValue()
- 13.2. Java – Метод compareTo()
- 13.3. Java – Метод equals()
- 13.4. Java – Метод valueOf()
- 13.5. Java – Метод toString()
- 13.6. Java – Метод parseInt()
- 13.7. Java – Метод Math.abs()
- 13.8. Java – Метод Math.ceil()
- 13.9. Java – Метод Math.floor()
- 13.10. Java – Метод Math.rint()
- 13.11. Java – Метод Math.round()
- 13.12. Java – Метод Math.min()
- 13.13. Java – Метод Math.max()
- 13.14. Java – Метод Math.exp()
- 13.15. Java – Метод Math.log()
- 13.16. Java – Метод Math.pow()
- 13.17. Java – Метод Math.sqrt()
- 13.18. Java – Метод Math.sin()
- 13.19. Java – Метод Math.cos()
- 13.20. Java – Метод Math.tan()
- 13.21. Java – Метод Math.asin()
- 13.22. Java – Метод Math.acos()
- 13.23. Java – Метод Math.atan()
- 13.24. Java – Метод Math.atan2()
- 13.25. Java – Метод Math.toDegrees()
- 13.26. Java – Метод Math.toRadians()
- 13.27. Java – Метод Math.random()
- 14. Java – Символы
- 14.1. Java – Метод Character.isLetter()
- 14.2. Java – Метод Character.isDigit()
- 14.3. Java – Метод Character.isWhitespace()
- 14.4. Java – Метод Character.isUpperCase()
- 14.5. Java – Метод Character.isLowerCase()
- 14.6. Java – Метод Character.toUpperCase()
- 14.7. Java – Метод Character.toLowerCase()
- 14.8. Java – Метод Character.toString()
- 15. Java – Строки
- 15.1. Java – Метод charAt()
- 15.2. Java – Метод compareTo()
- 15.3. Java – Метод compareToIgnoreCase()
- 15.4. Java – Метод concat()
- 15.5. Java – Метод contentEquals()
- 15.6. Java – Метод copyValueOf()
- 15.7. Java – Метод endsWith()
- 15.8. Java – Метод equals()
- 15.9. Java – Метод equalsIgnoreCase()
- 15.10. Java – Метод getBytes()
- 15.11. Java – Метод getChars()
- 15.12. Java – Метод hashCode()
- 15.13. Java – Метод indexOf()
- 15.14. Java – Метод intern()
- 15.15. Java – Метод lastIndexOf()
- 15.16. Java – Метод length()
- 15.17. Java – Метод matches()
- 15.18. Java – Метод regionMatches()
- 15.19. Java – Метод replace()
- 15.20. Java – Метод replaceAll()
- 15.21. Java – Метод replaceFirst()
- 15.22. Java – Метод split()
- 15.23. Java – Метод startsWith()
- 15.24. Java – Метод subSequence()
- 15.25. Java – Метод substring()
- 15.26. Java – Метод toCharArray()
- 15.27. Java – Метод toLowerCase()
- 15.28. Java – Метод toString()
- 15.29. Java – Метод toUpperCase()
- 15.30. Java – Метод trim()
- 15.31. Java – Метод valueOf()
- 15.32. Java – Классы StringBuilder и StringBuffer
- 15.32.1. Java – Метод append()
- 15.32.2. Java – Метод reverse()
- 15.32.3. Java – Метод delete()
- 15.32.4. Java – Метод insert()
- 15.32.5. Java – Метод replace()
- 16. Java – Массивы
- 17. Java – Дата и время
- 18. Java – Регулярные выражения
- 19. Java – Методы
- 20. Java – Потоки ввода/вывода, файлы и каталоги
- 20.1. Java – Класс ByteArrayInputStream
- 20.2. Java – Класс DataInputStream
- 20.3. Java – Класс ByteArrayOutputStream
- 20.4. Java – Класс DataOutputStream
- 20.5. Java – Класс File
- 20.6. Java – Класс FileReader
- 20.7. Java – Класс FileWriter
- 21. Java – Исключения
- 21.1. Java – Встроенные исключения
- 22. Java – Вложенные и внутренние классы
- 23. Java – Наследование
- 24. Java – Переопределение
- 25. Java – Полиморфизм
- 26. Java – Абстракция
- 27. Java – Инкапсуляция
- 28. Java – Интерфейсы
- 29. Java – Пакеты
- 30. Java – Структуры данных
- 30.1. Java – Интерфейс Enumeration
- 30.2. Java – Класс BitSet
- 30.3. Java – Класс Vector
- 30.4. Java – Класс Stack
- 30.5. Java – Класс Dictionary
- 30.6. Java – Класс Hashtable
- 30.7. Java – Класс Properties
- 31. Java – Коллекции
- 31.1. Java – Интерфейс Collection
- 31.2. Java – Интерфейс List
- 31.3. Java – Интерфейс Set
- 31.4. Java – Интерфейс SortedSet
- 31.5. Java – Интерфейс Map
- 31.6. Java – Интерфейс Map.Entry
- 31.7. Java – Интерфейс SortedMap
- 31.8. Java – Класс LinkedList
- 31.9. Java – Класс ArrayList
- 31.10. Java – Класс HashSet
- 31.11. Java – Класс LinkedHashSet
- 31.12. Java – Класс TreeSet
- 31.13. Java – Класс HashMap
- 31.14. Java – Класс TreeMap
- 31.15. Java – Класс WeakHashMap
- 31.16. Java – Класс LinkedHashMap
- 31.17. Java – Класс IdentityHashMap
- 31.18. Java – Алгоритмы Collection
- 31.19. Java – Iterator и ListIterator
- 31.20. Java – Comparator
- 32. Java – Дженерики
- 33. Java – Сериализация
- 34. Java – Сеть
- 34.1. Java – Обработка URL
- 35. Java – Отправка Email
- 36. Java – Многопоточность
- 36.1. Java – Синхронизация потоков
- 36.2. Java – Межпоточная связь
- 36.3. Java – Взаимная блокировка потоков
- 36.4. Java – Управление потоками
- 37. Java – Основы работы с апплетами
- 38. Java – Javadoc