Java date создать дату

Class Date

A thin wrapper around a millisecond value that allows JDBC to identify this as an SQL DATE value. A milliseconds value represents the number of milliseconds that have passed since January 1, 1970 00:00:00.000 GMT.

To conform with the definition of SQL DATE , the millisecond values wrapped by a java.sql.Date instance must be ‘normalized’ by setting the hours, minutes, seconds, and milliseconds to zero in the particular time zone with which the instance is associated.

Constructor Summary

Method Summary

This method always throws an UnsupportedOperationException and should not be used because SQL Date values do not have a time component.

Obtains an instance of Date from a LocalDate object with the same year, month and day of month value as the given LocalDate .

Methods declared in class java.util.Date

Methods declared in class java.lang.Object

Constructor Details

Date

Constructs a Date object initialized with the given year, month, and day. The result is undefined if a given argument is out of bounds.

Date

Constructs a Date object using the given milliseconds time value. If the given milliseconds value contains time information, the driver will set the time components to the time in the default time zone (the time zone of the Java virtual machine running the application) that corresponds to zero GMT.

Method Details

setTime

Sets an existing Date object using the given milliseconds time value. If the given milliseconds value contains time information, the driver will set the time components to the time in the default time zone (the time zone of the Java virtual machine running the application) that corresponds to zero GMT.

Читайте также:  Python split and regex

valueOf

toString

getHours

This method is deprecated and should not be used because SQL Date values do not have a time component.

getMinutes

This method is deprecated and should not be used because SQL Date values do not have a time component.

getSeconds

This method is deprecated and should not be used because SQL Date values do not have a time component.

setHours

This method is deprecated and should not be used because SQL Date values do not have a time component.

setMinutes

This method is deprecated and should not be used because SQL Date values do not have a time component.

setSeconds

This method is deprecated and should not be used because SQL Date values do not have a time component.

valueOf

Obtains an instance of Date from a LocalDate object with the same year, month and day of month value as the given LocalDate . The provided LocalDate is interpreted as the local date in the local time zone.

toLocalDate

toInstant

This method always throws an UnsupportedOperationException and should not be used because SQL Date values do not have a time component.

Report a bug or suggest an enhancement
For further API reference and developer documentation see the Java SE Documentation, which contains more detailed, developer-targeted descriptions with conceptual overviews, definitions of terms, workarounds, and working code examples. Other versions.
Java is a trademark or registered trademark of Oracle and/or its affiliates in the US and other countries.
Copyright © 1993, 2023, Oracle and/or its affiliates, 500 Oracle Parkway, Redwood Shores, CA 94065 USA.
All rights reserved. Use is subject to license terms and the documentation redistribution policy.

Источник

Class Date

Prior to JDK 1.1, the class Date had two additional functions. It allowed the interpretation of dates as year, month, day, hour, minute, and second values. It also allowed the formatting and parsing of date strings. Unfortunately, the API for these functions was not amenable to internationalization. As of JDK 1.1, the Calendar class should be used to convert between dates and time fields and the DateFormat class should be used to format and parse date strings. The corresponding methods in Date are deprecated.

Although the Date class is intended to reflect coordinated universal time (UTC), it may not do so exactly, depending on the host environment of the Java Virtual Machine. Nearly all modern operating systems assume that 1 day = 24 × 60 × 60 = 86400 seconds in all cases. In UTC, however, about once every year or two there is an extra second, called a «leap second.» The leap second is always added as the last second of the day, and always on December 31 or June 30. For example, the last minute of the year 1995 was 61 seconds long, thanks to an added leap second. Most computer clocks are not accurate enough to be able to reflect the leap-second distinction.

Some computer standards are defined in terms of Greenwich mean time (GMT), which is equivalent to universal time (UT). GMT is the «civil» name for the standard; UT is the «scientific» name for the same standard. The distinction between UTC and UT is that UTC is based on an atomic clock and UT is based on astronomical observations, which for all practical purposes is an invisibly fine hair to split. Because the earth’s rotation is not uniform (it slows down and speeds up in complicated ways), UT does not always flow uniformly. Leap seconds are introduced as needed into UTC so as to keep UTC within 0.9 seconds of UT1, which is a version of UT with certain corrections applied. There are other time and date systems as well; for example, the time scale used by the satellite-based global positioning system (GPS) is synchronized to UTC but is not adjusted for leap seconds. An interesting source of further information is the United States Naval Observatory (USNO):

and the material regarding «Systems of Time» at:

which has descriptions of various different time systems including UT, UT1, and UTC.

  • A year y is represented by the integer y — 1900 .
  • A month is represented by an integer from 0 to 11; 0 is January, 1 is February, and so forth; thus 11 is December.
  • A date (day of month) is represented by an integer from 1 to 31 in the usual manner.
  • An hour is represented by an integer from 0 to 23. Thus, the hour from midnight to 1 a.m. is hour 0, and the hour from noon to 1 p.m. is hour 12.
  • A minute is represented by an integer from 0 to 59 in the usual manner.
  • A second is represented by an integer from 0 to 61; the values 60 and 61 occur only for leap seconds and even then only in Java implementations that actually track leap seconds correctly. Because of the manner in which leap seconds are currently introduced, it is extremely unlikely that two leap seconds will occur in the same minute, but this specification follows the date and time conventions for ISO C.

In all cases, arguments given to methods for these purposes need not fall within the indicated ranges; for example, a date may be specified as January 32 and is interpreted as meaning February 1.

Constructor Summary

Allocates a Date object and initializes it so that it represents the time at which it was allocated, measured to the nearest millisecond.

As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date) or GregorianCalendar(year + 1900, month, date) .

As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min) or GregorianCalendar(year + 1900, month, date, hrs, min) .

As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min, sec) or GregorianCalendar(year + 1900, month, date, hrs, min, sec) .

Allocates a Date object and initializes it to represent the specified number of milliseconds since the standard base time known as «the epoch», namely January 1, 1970, 00:00:00 GMT.

Источник

Class Date

Prior to JDK 1.1, the class Date had two additional functions. It allowed the interpretation of dates as year, month, day, hour, minute, and second values. It also allowed the formatting and parsing of date strings. Unfortunately, the API for these functions was not amenable to internationalization. As of JDK 1.1, the Calendar class should be used to convert between dates and time fields and the DateFormat class should be used to format and parse date strings. The corresponding methods in Date are deprecated.

Although the Date class is intended to reflect coordinated universal time (UTC), it may not do so exactly, depending on the host environment of the Java Virtual Machine. Nearly all modern operating systems assume that 1 day = 24 × 60 × 60 = 86400 seconds in all cases. In UTC, however, about once every year or two there is an extra second, called a «leap second.» The leap second is always added as the last second of the day, and always on December 31 or June 30. For example, the last minute of the year 1995 was 61 seconds long, thanks to an added leap second. Most computer clocks are not accurate enough to be able to reflect the leap-second distinction.

Some computer standards are defined in terms of Greenwich mean time (GMT), which is equivalent to universal time (UT). GMT is the «civil» name for the standard; UT is the «scientific» name for the same standard. The distinction between UTC and UT is that UTC is based on an atomic clock and UT is based on astronomical observations, which for all practical purposes is an invisibly fine hair to split. Because the earth’s rotation is not uniform (it slows down and speeds up in complicated ways), UT does not always flow uniformly. Leap seconds are introduced as needed into UTC so as to keep UTC within 0.9 seconds of UT1, which is a version of UT with certain corrections applied. There are other time and date systems as well; for example, the time scale used by the satellite-based global positioning system (GPS) is synchronized to UTC but is not adjusted for leap seconds. An interesting source of further information is the United States Naval Observatory (USNO):

and the material regarding «Systems of Time» at:

which has descriptions of various different time systems including UT, UT1, and UTC.

  • A year y is represented by the integer y — 1900 .
  • A month is represented by an integer from 0 to 11; 0 is January, 1 is February, and so forth; thus 11 is December.
  • A date (day of month) is represented by an integer from 1 to 31 in the usual manner.
  • An hour is represented by an integer from 0 to 23. Thus, the hour from midnight to 1 a.m. is hour 0, and the hour from noon to 1 p.m. is hour 12.
  • A minute is represented by an integer from 0 to 59 in the usual manner.
  • A second is represented by an integer from 0 to 61; the values 60 and 61 occur only for leap seconds and even then only in Java implementations that actually track leap seconds correctly. Because of the manner in which leap seconds are currently introduced, it is extremely unlikely that two leap seconds will occur in the same minute, but this specification follows the date and time conventions for ISO C.

In all cases, arguments given to methods for these purposes need not fall within the indicated ranges; for example, a date may be specified as January 32 and is interpreted as meaning February 1.

Constructor Summary

Allocates a Date object and initializes it so that it represents the time at which it was allocated, measured to the nearest millisecond.

As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date) or GregorianCalendar(year + 1900, month, date) .

As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min) or GregorianCalendar(year + 1900, month, date, hrs, min) .

As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min, sec) or GregorianCalendar(year + 1900, month, date, hrs, min, sec) .

Allocates a Date object and initializes it to represent the specified number of milliseconds since the standard base time known as «the epoch», namely January 1, 1970, 00:00:00 GMT.

Источник

Оцените статью