Графический метод решения задачи линейного программирования примеры решения задач

2. Графический метод решения задач линейного программирования

Алгоритм решения ЗЛП с двумя переменными графическим методом:

  1. Строится область допустимых решений.
  2. Строится вектор = (с1, с2) с точкой приложения в начале координат.
  3. Перпендикулярно вектору проводится одна из линий уровня, например линия уровня, соответствующая уравнению с1х1 + с2х2= 0.

4.Линия уровня перемещается до положения опорной прямой. На этой прямой и будет находиться максимум или минимум функции.

Пример 1. Решить задачу линейного программирования графическим методом: F(X)=2x1+4x2→ max,

Решение. Изобразим на плоскости систему координат Ох1х2 и построим граничные прямые области допустимых решений (номера прямых соответствуют их порядковому номеру в системе). Область допустимых решений определяется многоугольником OABCD (рис. 2.1).

Для линий уровня 2х1 + 4х2 = с (с = const) строим нормальный вектор = (2, 4). Перпендикулярно вектору построим одну из линий уровня (на рис. 2.4 она проходит через начало координат). Так как задача на максимум, то перемещаем линию уровня в направлении вектора до опорной прямой.

Р

В данном случае опорной прямой является прямая, проходящая через точку пересечения граничных прямых L1 и L2, т.е. через точку В = L1L2. Для определения координат точки В решаем систему уравнений

ешение. Изобразим на плоскости систему координат Ох1х2 и

Получаем х1 = 3, х2 = 6. Это и будет оптимальное решение данной задачи, которому соответствует максимальное значение целевой функции

max F(X) = 2 · 3 + 4 · 6 = 30.

Пример 2. Найти минимум функции F(X)=2x1+x2→ min при ограничениях

О

тличие этого примера от предыдущего состоит в том, что здесь ищется не максимум, а минимум функции F. Областью решений данной системы ограничений является треугольник АВС (рис.2.2). На рисунке изображены также исходная линия уровня и вектор q = (2; 1), показывающий направление движения этой линии для достижения максимума функции F. Так как требуется найти минимум этой функции, то будем передвигать исходную линию уровня в сторону, противоположную вектору q. Как видно из рис. 2.2, минимум функции F достигается в угловой точке А, координаты которой служат решением системы уравнений

Отсюда А (6/7; 25/7) и Fmin = 37/7.

2.2. Графический метод решения задач линейного программирования с п переменными

Графическим методом можно решить ЗЛП, имеющие каноническую форму и удовлетворяющие условию nr2, где п — число неизвестных системы; r ранг системы векторов-условий (число линейно независимых уравнений системы).

Если уравнения системы ограничений линейно независимы, то r = т, где т — число уравнений.

Рассмотрим алгоритм метода на конкретном примере.

Пример. Решить графическим методом задачу

Решение. Проверяем, применим ли графический метод при решении данной задачи. Нетрудно видеть, что любые два из векторов-условий, например линейно независимы, так как их координаты непропорциональны. Поэтому ранг системы векторов-условий r=2. Находим п- r= 4-2 = 2 ≤ 2. Следовательно, метод применим.

Приведем систему уравнений-ограничений к равносильной, с помощью линейных преобразований, предварительно записав её в матричной форме: .

Таким образом, получили систему: .

Выразим переменные х1 и х2: х2=4-2х3х4

Т.к. х1≥0 и х2≥0, то систему уравнений мы записываем в виде системы неравенств: .

В результате получим эквивалентную задачу линейного программирования с двумя переменными, которая решается графическим методом

Изобразим на плоскости систему координат Ох1х2 и построим граничные прямые области допустимых решений. Находим оптимальное решение эквивалентной задачи и соответствующее ему максимальное значение целевой функции: С(2,0), F(C)=5+4·2+0=13.

Используем систему ограничений исходной задачи, приведенную к каноническому виду, и оптимальное решение задачи с двумя переменными для нахождения оптимального решения исходной задачи:

Следовательно, X=(3,0,2,0); F(X)=3+0+5·2+3·0=13.

Ответ: max F(X)= 13, при X=(3,0,2,0) .

Источник

Решение задач линейного программирования
графическим методом

Существуют два наиболее распространенных способа решения задач линейного программирования (ЗЛП): графический метод и симплекс-метод. Графический метод существенно нагляднее и обычно проще для понимания и решения (хотя занимает много времени, так как требует тщательного построения чертежа). Также этот метод позволяет практически одновременно найти решение на минимум и максимум, тогда как симплекс-методом придется делать «два подхода».

Основные шаги по решению ЗПЛ графическим методом следующие: построить область допустимых решений задачи (выпуклый многоугольник), который определяется как пересечение полуплоскостей, соответствующих неравенствам задачи, построить линию уровня целевой функции, и, наконец, двигать линию уровня в нужном направлении, пока не достигнем крайней точки области — оптимальной точки (или множества). При этом можно найти единственное оптимальное решение (точку), множество (отрезок) или ни одного (область пустая или не ограниченная в нужном направлении).

А за конкретикой — к примерам ниже: вы найдете там решенные графическим способом задачи линейного программирования. Примеры решений выложены бесплатно для вашего удобства — изучайте, ищите похожие, решайте. Если вам нужна помощь в выполнении заданий по методам оптимальных решений, перейдите в раздел: Решение задач ЛП на заказ (решаем для студентов очников и заочников).

Графический метод решения ЗЛП: примеры онлайн

Задача 1. Колхоз имеет возможность приобрести не более 19 трехтонных автомашин и не более 17 пятитонных. Отпускная цена трехтонного грузовика — 4000 руб., пятитонного — 5000 руб. Колхоз может выделить для приобретения автомашин 141 тысяч рублей. Сколько нужно приобрести автомашин, чтобы их суммарная грузоподъемность была максимальной?
Задачу решить графическими и аналитическими методами.

Задача 2. Решить задачу графическим методом на минимум и на максимум

Задача 3. Решить задачу графическим методом на минимум и на максимум

Задача 4. Среди чисел x и y, удовлетворяющих условиям

найти такие, при которых разность этих чисел y-x принимает наибольшее значение.

Задача 5. Решить графическим методом ЗЛП, заданную указанной математической моделью.

Задача 6. Решите графически следующие задачи линейного программирования

Задача 7. Решить графическим методом

Источник

Графический метод решения ЗЛП

В линейном программировании используется графический метод, с помощью которого определяют выпуклые множества (многогранник решений). Если основная задача линейного программирования имеет оптимальный план, то целевая функция принимает значение в одной из вершин многогранника решений (см. рисунок).

Инструкция . Выберите количество строк (количество ограничений). Если количество переменных больше двух, необходимо систему привести к СЗЛП (см. пример и пример №2). Если ограничение двойное, например, 1 ≤ x1 ≤ 4 , то оно разбивается на два: x1 ≥ 1 , x1 ≤ 4 (т.е. количество строк увеличивается на 1).
Построить область допустимого решения (ОДР) можно также с помощью этого сервиса.

Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.

  1. На плоскости X10X2 строят прямые.
  2. Определяются полуплоскости.
  3. Определяют многоугольник решений;
  4. Строят вектор N(c1,c2), который указывает направление целевой функции;
  5. Передвигают прямую целевую функцию c1x2 + c2x2 = 0 в направлении вектора N до крайней точки многоугольника решений.
  6. Вычисляют координаты точки и значение целевой функции в этой точке.

Линейное программирование. Графический метод

    Целевая функция принимает экстремальное (минимальное или максимальное) значение в единственной точке А.

  1. Сформулировать математическую модель задачи линейного программирования.
  2. Решить задачу линейного программирования графическим способом (для двух переменных).

Если количество переменных в задаче линейного программирования больше двух, то задачу предварительно сводят к стандартной ЗЛП.
F(X) = 3x1 — 2x2 + 5x3 — 4x5 → max при ограничениях:
x1 + x2 + x3=12
2x1 — x2 + x4=8
— 2x1 + 2x2 + x5=10
F(X) = 3x1 — 2x2 + 5x3 — 4x5
Переход к СЗЛП.
Расширенная матрица системы ограничений-равенств данной задачи:

1 1 1 0 0 12
2 -1 0 1 0 8
-2 2 0 0 1 10

Приведем систему к единичной матрице методом жордановских преобразований.
1. В качестве базовой переменной можно выбрать x3.
2. В качестве базовой переменной можно выбрать x4.
3. В качестве базовой переменной можно выбрать x5.
Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (3,4,5).
Соответствующие уравнения имеют вид:
x1 + x2 + x3 = 12
2x1 — x2 + x4 = 8
— 2x1 + 2x2 + x5 = 10
Выразим базисные переменные через остальные:
x3 = — x1 — x2+12
x4 = — 2x1 + x2+8
x5 = 2x1 — 2x2+10
Подставим их в целевую функцию:
F(X) = 3x1 — 2x2 + 5(- x1 — x2+12) — 4(2x1 — 2x2+10)
или
F(X) = — 10x1 + x2+20 → max
Система неравенств:
— x1 — x2+12 ≥ 0
— 2x1 + x2+8 ≥ 0
2x1 — 2x2+10 ≥ 0
Приводим систему неравенств к следующему виду:
x1 + x2 ≤ 12
2x1 — x2 ≤ 8
— 2x1 + 2x2 ≤ 10
F(X) = — 10x1 + x2+20 → max

Особенности решения задач линейного программирования графическим методом

Переменную x2 принимаем в качестве дополнительной переменной и делаем замену на знак «≥»:
f=x1 + 6x3+ 27
x1 + 3x3≥6

Далее задача решается графическом способом.

Пример №2
F(X) = 3x1 — 2x2 + 5x3 — 4x5 → max при ограничениях:
x1 + x2 + x3=12
2x1 — x2 + x4=8
— 2x1 + 2x2 + x5=10
F(X) = 3x1 — 2x2 + 5x3 — 4x5
Переход к СЗЛП.
Расширенная матрица системы ограничений-равенств данной задачи:

1 1 1 0 0 12
2 -1 0 1 0 8
-2 2 0 0 1 10

Приведем систему к единичной матрице методом жордановских преобразований.
1. В качестве базовой переменной можно выбрать x3.
2. В качестве базовой переменной можно выбрать x4.
3. В качестве базовой переменной можно выбрать x5.
Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (3,4,5).
Соответствующие уравнения имеют вид:
x1 + x2 + x3 = 12
2x1 — x2 + x4 = 8
— 2x1 + 2x2 + x5 = 10
Выразим базисные переменные через остальные:
x3 = — x1 — x2+12
x4 = — 2x1 + x2+8
x5 = 2x1 — 2x2+10
Подставим их в целевую функцию:
F(X) = 3x1 — 2x2 + 5(- x1 — x2+12) — 4(2x1 — 2x2+10)
или
F(X) = — 10x1 + x2+20 → max
Система неравенств:
— x1 — x2+12 ≥ 0
— 2x1 + x2+8 ≥ 0
2x1 — 2x2+10 ≥ 0
Приводим систему неравенств к следующему виду:
x1 + x2 ≤ 12
2x1 — x2 ≤ 8
— 2x1 + 2x2 ≤ 10
F(X) = — 10x1 + x2+20 → max

  • Составить систему математических зависимостей (неравенств) и целевую функцию.
  • Изобразить геометрическую интерпретацию задачи.
  • Найти оптимальное решение.
  • Провести аналитическую проверку.
  • Определить существенные и несущественные ресурсы и их избытки.
  • Определить значение целевой функции.
  • Вычислить объективно обусловленные оценки.
  • Составить соотношение устойчивости.

Источник

Читайте также:  Выберите корректирующую характеристику языка программирования python
Оцените статью