Function header file cpp

Header files (C++)

The names of program elements such as variables, functions, classes, and so on must be declared before they can be used. For example, you can’t just write x = 42 without first declaring ‘x’.

int x; // declaration x = 42; // use x 

The declaration tells the compiler whether the element is an int , a double , a function, a class or some other thing. Furthermore, each name must be declared (directly or indirectly) in every .cpp file in which it is used. When you compile a program, each .cpp file is compiled independently into a compilation unit. The compiler has no knowledge of what names are declared in other compilation units. That means that if you define a class or function or global variable, you must provide a declaration of that thing in each additional .cpp file that uses it. Each declaration of that thing must be exactly identical in all files. A slight inconsistency will cause errors, or unintended behavior, when the linker attempts to merge all the compilation units into a single program.

To minimize the potential for errors, C++ has adopted the convention of using header files to contain declarations. You make the declarations in a header file, then use the #include directive in every .cpp file or other header file that requires that declaration. The #include directive inserts a copy of the header file directly into the .cpp file prior to compilation.

In Visual Studio 2019, the C++20 modules feature is introduced as an improvement and eventual replacement for header files. For more information, see Overview of modules in C++.

Читайте также:  Пример использования свойства CSS table-layout.

Example

The following example shows a common way to declare a class and then use it in a different source file. We’ll start with the header file, my_class.h . It contains a class definition, but note that the definition is incomplete; the member function do_something is not defined:

Next, create an implementation file (typically with a .cpp or similar extension). We’ll call the file my_class.cpp and provide a definition for the member declaration. We add an #include directive for «my_class.h» file in order to have the my_class declaration inserted at this point in the .cpp file, and we include to pull in the declaration for std::cout . Note that quotes are used for header files in the same directory as the source file, and angle brackets are used for standard library headers. Also, many standard library headers do not have .h or any other file extension.

In the implementation file, we can optionally use a using statement to avoid having to qualify every mention of «my_class» or «cout» with «N::» or «std::». Don’t put using statements in your header files!

// my_class.cpp #include "my_class.h" // header in local directory #include // header in standard library using namespace N; using namespace std; void my_class::do_something()

Now we can use my_class in another .cpp file. We #include the header file so that the compiler pulls in the declaration. All the compiler needs to know is that my_class is a class that has a public member function called do_something() .

// my_program.cpp #include "my_class.h" using namespace N; int main()

After the compiler finishes compiling each .cpp file into .obj files, it passes the .obj files to the linker. When the linker merges the object files it finds exactly one definition for my_class; it is in the .obj file produced for my_class.cpp, and the build succeeds.

Include guards

Typically, header files have an include guard or a #pragma once directive to ensure that they are not inserted multiple times into a single .cpp file.

// my_class.h #ifndef MY_CLASS_H // include guard #define MY_CLASS_H namespace N < class my_class < public: void do_something(); >; > #endif /* MY_CLASS_H */ 

What to put in a header file

Because a header file might potentially be included by multiple files, it cannot contain definitions that might produce multiple definitions of the same name. The following are not allowed, or are considered very bad practice:

  • built-in type definitions at namespace or global scope
  • non-inline function definitions
  • non-const variable definitions
  • aggregate definitions
  • unnamed namespaces
  • using directives

Use of the using directive will not necessarily cause an error, but can potentially cause a problem because it brings the namespace into scope in every .cpp file that directly or indirectly includes that header.

Sample header file

The following example shows the various kinds of declarations and definitions that are allowed in a header file:

// sample.h #pragma once #include // #include directive #include namespace N // namespace declaration < inline namespace P < //. >enum class colors : short < red, blue, purple, azure >; const double PI = 3.14; // const and constexpr definitions constexpr int MeaningOfLife< 42 >; constexpr int get_meaning() < static_assert(MeaningOfLife == 42, "unexpected!"); // static_assert return MeaningOfLife; >using vstr = std::vector; // type alias extern double d; // extern variable #define LOG // macro definition #ifdef LOG // conditional compilation directive void print_to_log(); #endif class my_class // regular class definition, < // but no non-inline function definitions friend class other_class; public: void do_something(); // definition in my_class.cpp inline void put_value(int i) < vals.push_back(i); >// inline OK private: vstr vals; int i; >; struct RGB < short r< 0 >; // member initialization short g< 0 >; short b< 0 >; >; template // template definition class value_store < public: value_store() = default; void write_value(T val) < //. function definition OK in template >private: std::vector vals; >; template // template declaration class value_widget; > 

Feedback

Submit and view feedback for

Источник

13.11 — Class code and header files

13.11 — Class code and header files

All of the classes that we have written so far have been simple enough that we have been able to implement the member functions directly inside the class definition itself. For example, here’s our ubiquitous Date class:

class Date < private: int m_year; int m_month; int m_day; public: Date(int year, int month, int day) < setDate(year, month, day); >void setDate(int year, int month, int day) < m_year = year; m_month = month; m_day = day; >int getYear() < return m_year; >int getMonth() < return m_month; >int getDay() < return m_day; >>;

However, as classes get longer and more complicated, having all the member function definitions inside the class can make the class harder to manage and work with. Using an already-written class only requires understanding its public interface (the public member functions), not how the class works underneath the hood. The member function implementation details just get in the way.

Fortunately, C++ provides a way to separate the “declaration” portion of the class from the “implementation” portion. This is done by defining the class member functions outside of the class definition. To do so, simply define the member functions of the class as if they were normal functions, but prefix the class name to the function using the scope resolution operator (::) (same as for a namespace).

Here is our Date class with the Date constructor and setDate() function defined outside of the class definition. Note that the prototypes for these functions still exist inside the class definition, but the actual implementation has been moved outside:

class Date < private: int m_year; int m_month; int m_day; public: Date(int year, int month, int day); void SetDate(int year, int month, int day); int getYear() < return m_year; >int getMonth() < return m_month; >int getDay() < return m_day; >>; // Date constructor Date::Date(int year, int month, int day) < SetDate(year, month, day); >// Date member function void Date::SetDate(int year, int month, int day)

This is pretty straightforward. Because access functions are often only one line, they are typically left in the class definition, even though they could be moved outside.

Here is another example that includes an externally defined constructor with a member initialization list:

class Calc < private: int m_value = 0; public: Calc(int value=0); Calc& add(int value); Calc& sub(int value); Calc& mult(int value); int getValue() < return m_value; >>; Calc::Calc(int value): m_value  < >Calc& Calc::add(int value) < m_value += value; return *this; >Calc& Calc::sub(int value) < m_value -= value; return *this; >Calc& Calc::mult(int value)

Putting class definitions in a header file

In the lesson on header files, you learned that you can put function declarations inside header files in order to use those functions in multiple files or even multiple projects. Classes are no different. Class definitions can be put in header files in order to facilitate reuse in multiple files or multiple projects. Traditionally, the class definition is put in a header file of the same name as the class, and the member functions defined outside of the class are put in a .cpp file of the same name as the class.

Here’s our Date class again, broken into a .cpp and .h file:

#ifndef DATE_H #define DATE_H class Date < private: int m_year; int m_month; int m_day; public: Date(int year, int month, int day); void SetDate(int year, int month, int day); int getYear() < return m_year; >int getMonth() < return m_month; >int getDay() < return m_day; >>; #endif
#include "Date.h" // Date constructor Date::Date(int year, int month, int day) < SetDate(year, month, day); >// Date member function void Date::SetDate(int year, int month, int day)

Now any other header or code file that wants to use the Date class can simply #include «Date.h» . Note that Date.cpp also needs to be compiled into any project that uses Date.h so the linker knows how Date is implemented.

Doesn’t defining a class in a header file violate the one-definition rule?

It shouldn’t. If your header file has proper header guards, it shouldn’t be possible to include the class definition more than once into the same file.

Types (which include classes), are exempt from the part of the one-definition rule that says you can only have one definition per program. Therefore, there isn’t an issue #including class definitions into multiple code files (if there was, classes wouldn’t be of much use).

Doesn’t defining member functions in the header violate the one-definition rule?

It depends. Member functions defined inside the class definition are considered implicitly inline. Inline functions are exempt from the one definition per program part of the one-definition rule. This means there is no problem defining trivial member functions (such as access functions) inside the class definition itself.

Member functions defined outside the class definition are treated like normal functions, and are subject to the one definition per program part of the one-definition rule. Therefore, those functions should be defined in a code file, not inside the header. One exception is for template functions, which are also implicitly inline.

So what should I define in the header file vs the cpp file, and what inside the class definition vs outside?

You might be tempted to put all of your member function definitions into the header file, inside the class. While this will compile, there are a couple of downsides to doing so. First, as mentioned above, this clutters up your class definition. Second, if you change anything about the code in the header, then you’ll need to recompile every file that includes that header. This can have a ripple effect, where one minor change causes the entire program to need to recompile (which can be slow). If you change the code in a .cpp file, only that .cpp file needs to be recompiled!

Therefore, we recommend the following:

  • For classes used in only one file that aren’t generally reusable, define them directly in the single .cpp file they’re used in.
  • For classes used in multiple files, or intended for general reuse, define them in a .h file that has the same name as the class.
  • Trivial member functions (trivial constructors or destructors, access functions, etc…) can be defined inside the class.
  • Non-trivial member functions should be defined in a .cpp file that has the same name as the class.

In future lessons, most of our classes will be defined in the .cpp file, with all the functions implemented directly in the class definition. This is just for convenience and to keep the examples short. In real projects, it is much more common for classes to be put in their own code and header files, and you should get used to doing so.

Default parameters

Default parameters for member functions should be declared in the class definition (in the header file), where they can be seen by whomever #includes the header.

Separating the class definition and class implementation is very common for libraries that you can use to extend your program. Throughout your programs, you’ve #included headers that belong to the standard library, such as iostream, string, vector, array, and other. Notice that you haven’t needed to add iostream.cpp, string.cpp, vector.cpp, or array.cpp into your projects. Your program needs the declarations from the header files in order for the compiler to validate you’re writing programs that are syntactically correct. However, the implementations for the classes that belong to the C++ standard library are contained in a precompiled file that is linked in at the link stage. You never see the code.

Outside of some open source software (where both .h and .cpp files are provided), most 3rd party libraries provide only header files, along with a precompiled library file. There are several reasons for this: 1) It’s faster to link a precompiled library than to recompile it every time you need it, 2) a single copy of a precompiled library can be shared by many applications, whereas compiled code gets compiled into every executable that uses it (inflating file sizes), and 3) intellectual property reasons (you don’t want people stealing your code).

Having your own files separated into declaration (header) and implementation (code file) is not only good form, it also makes creating your own custom libraries easier. Creating your own libraries is beyond the scope of these tutorials, but separating your declaration and implementation is a prerequisite to doing so.

Источник

Оцените статью