Двойственная функция линейное программирование

Решение двойственной задачи линейного программирования

Инструкция . Выберите количество переменных и количество ограничений прямой задачи линейного программирования, нажмите Далее . Полученное решение сохраняется в файле Word и Excel . При этом ограничения типа xi ≥ 0 не учитывайте. Если прямая задача ЛП не имеет решение, но требуется составить двойственную задачу или одна из переменных xi неопределена, то можно использовать этот калькулятор.

Определив обратную матрицу А -1 через алгебраические дополнения, получим:
Как видно из последнего плана симплексной таблицы, обратная матрица A -1 расположена в столбцах дополнительных переменных x4 , x5 , x6 .
Тогда Y = C*A -1 =
Оптимальный план двойственной задачи равен: y1 = 23.75, y2 = 12.5, y3 = 0
Z(Y) = 1100*23.75+120*12.5+8000*0 = 27625
Подставим оптимальный план прямой задачи в систему ограниченной математической модели:
0.1*250 + 0.2*5375 + 0.4*0 = 1100 = 1100
0.05*250 + 0.02*5375 + 0.02*0 = 120 = 120
3*250 + 1*5375 + 2*0 = 6125 < 8000 1-ое ограничение прямой задачи выполняется как равенство. Это означает, что 1-ый ресурс полностью используется в оптимальном плане, является дефицитным и его оценка согласно второй теореме двойственности отлична от нуля (y1>0).
2-ое ограничение прямой задачи выполняется как равенство. Это означает, что 2-ый ресурс полностью используется в оптимальном плане, является дефицитным и его оценка согласно второй теореме двойственности отлична от нуля (y2>0).
3-ое ограничение выполняется как строгое неравенство, т.е. ресурс 3-го вида израсходован не полностью. Значит, этот ресурс не является дефицитным и его оценка в оптимальном плане y3 = 0.
Таким образом, отличную от нуля двойственные оценки имеют лишь те виды ресурсов, которые полностью используются в оптимальном плане. Поэтому двойственные оценки определяют дефицитность ресурсов.
При постановке оптимальных двойственных оценок в систему ограничений двойственной задачи получим:
0.1*23.75 + 0.05*12.5 + 3*0 = 3 = 3
0.2*23.75 + 0.02*12.5 + 1*0 = 5 = 5
0.4*23.75 + 0.02*12.5 + 2*0 = 9.75 > 4
1-ое ограничение двойственной задачи выполняется как равенство. Это означает, что 1-ый ресурс экономически выгодно использовать, а его использование предусмотрено оптимальным планом прямой задачи (x1>0).
2-ое ограничение двойственной задачи выполняется как равенство. Это означает, что 2-ый ресурс экономически выгодно использовать, а его использование предусмотрено оптимальным планом прямой задачи (x2>0).
3-ое ограничение выполняется как строгое неравенство, т.е. ресурс 3-го вида использовать экономически не выгодно. И действительно в оптимальном плане прямой задачи x3 = 0.
Величина двойственной оценки показывает, на сколько возрастает значение целевой функции при увеличении дефицитного ресурса на единицу.
Например, увеличении 1-го ресурса на 1 приведет к получению нового оптимального плана, в котором целевая функция возрастает на 23.75 и станет равной: F(x) = 27625 + 23.75 = 27648.75
Проведем анализ устойчивости оптимального плана и оценим степень влияния изменения ресурсов на значение целевой функции.
Пусть каждое значение параметра целевой функции изменится на ∆ сi. Найдем интервалы, при которых будет экономически выгодно использование ресурсов.
1-ый параметр целевой функции может изменяться в пределах:

Читайте также:  Sims 4 язык программирования

-3.8 ≤ с1 ≤ 1
Таким образом, 1-параметр может быть уменьшен на 3.8 или увеличен на 1
Интервал изменения равен: [3-3.8; 3+1] = [-0.8;4]
Если значение c1 будет лежать в данном интервале, то оптимальный план не изменится. 2-ый параметр целевой функции может изменяться в пределах:

-10 ≤ b2 ≤ 30
Таким образом, 2-ый запас может быть уменьшен на 10 или увеличен на 30
Интервал изменения равен: [120-10; 120+30] = [110;150]
Составим субоптимальные варианты плана с учетом изменений исходных данных модели (таблицы).
Пусть 2-ый ресурс увеличили на 50

Базисные переменные Значение базисных переменных Коэффициент структурных сдвигов k c Произведение k c на (50) Расчет варианта плана
x 2 5375 6.25 312.5 5687.5
x 1 250 -2.5 -125 125
x 6 1875 1.25 62.5 1937.5
F(X) 27625 23.75 1187.5 28812.5
Пусть 1-ый ресурс уменьшили на -5
Базисные переменные Значение базисных переменных Коэффициент структурных сдвигов k c Произведение k c на (-5) Расчет варианта плана
x 2 5375 -12.5 62.5 5437.5
x 1 250 25 -125 125
x 6 1875 -62.5 312.5 2187.5
F(X) 27625 12.5 -62.5 27562.5
Задание : Для исходной задачи составить двойственную. Решить обе задачи симплексным методом или двойственным симплексным методом и по решению каждой из них найти решение другой. Одну из задач решить графическим методом.
F(X) = 3x1 + x2 → min
— 2x1 + x2≥4
2x1 + x2≤8
3x1 + 2x2≥6
Решение.
I этап. Приводим систему к каноническому виду.
II этап. Решаем симплекс-методом.
Примечание: Если задача решается данным калькулятором, то предыдущие два этапа пропускаем, поскольку они автоматически включены в решение.
На втором этапе окончательный вариант симплекс-таблицы имеет вид:
Базис B x1 x2 x3 x4 x5 x6 x7
x5 2 -7 0 -2 0 1 2 -1
x4 4 4 0 1 1 0 -1 0
x2 4 -2 1 -1 0 0 1 0
F(X3) 4 -5 0 -1 0 0 1-M -M

Так как в оптимальном решении отсутствуют искусственные переменные (они равны нулю), то данное решение является допустимым. Записываем оптимальный план:
x1 = 0, x2 = 4, F(X) = 1•4 = 4 Составим двойственную задачу к прямой задаче.
— 2y1 + 2y2 + 3y3≤3
y1 + y2 + 2y3≤1
4y1 + 8y2 + 6y3 → max
y1 ≥ 0, y2 ≤ 0, y3 ≥ 0
Используя последнюю итерацию прямой задачи найдем, оптимальный план двойственной задачи. Из теоремы двойственности следует, что Y = C*A -1 . Составим матрицу A из компонентов векторов, входящих в оптимальный базис.

Читайте также:  Задачи нелинейного программирования формулы

Источник

3. 2 Двойственность в задачах линейного программирования

Каждой задаче линейного программирования соответствует другая задача, называемая двойственной или сопряженной по отношению к исходной. Теория двойственности оказалась полезной для проведения качественных исследований задач линейного программирования.

Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов. Ранее рассмотрена задача об использовании ресурсов (экономико-математическая модель и содержательная интерпретация этой задачи I представлены в левой части табл. 6.1). В приведенной модели bi (i = 1, 2, . m) обозначает запас ресурса Si , aij число единиц ресурса Si потребляемого при производстве единицы продукции Pj(j = 1, 2, . n); Cj прибыль (выручка) от реализации единицы продукции Pj (или цена продукции Pj). Предположим, что некоторая организация решила закупить ресурсы S1, S2, . Sm предприятия и необходимо установить оптимальные цены на эти ресурсы у1, у2, . ym Очевидно, что покупающая организация заинтересована в том, чтобы затраты на все ресурсы Z в количествах b1, b2, . bm по ценам соответственно у1, у2, . ymбыли минимальны, т.е Z=b1у1 + b2 у2 +. + bm уm min . С другой стороны, предприятие, продающее ресурсы, заинтересовано в том, чтобы полученная выручка была не менее той суммы, которую предприятие может получить при переработке ресурсов в готовую продукцию. На изготовление единицы продукции Р1 расходуется a11 единиц ресурса S1, a21 единиц ресурса S2, . ai1единиц ресурса Si . аm1 единиц ресурса Sm по цене соответственно у1, у2, . уi . ym. Поэтому для удовлетворения требований продавца затраты на ресурсы, потребляемые при изготовлении единицы продукции Р1 должны быть не менее ее цены c1, т.е. a11 у1 + a21 у2 +:+am1 уm>=c1 Аналогично можно составить ограничения в виде неравенств по каждому виду продукции Р1, Р2, . Рm. Экономико-математическая модель и содержательная интерпретация полученной таким образом двойственной задачи II приведены в правой части табл. 6.1.

Задача II (двойственная)

F=c1x1+c2x 2+. +cnxnmax (6.1) при ограничениях a11x1 + a12x2+. + a1nxn 1 a21x1 + a22x2+. + a 2nxn 2 (6.2) am1x1 + am2x2+. + amnxn m и условии неотрицательности x1>= 0; x2>= 0;: xn>= 0 Составить такой план выпуска продукции Х = 1, х2, . хn), при котором прибыль (выручка) от реализации продукции будет максимальной при условии, что потребление ресурсов по каждому виду продукции не превзойдет имеющихся запасов.

Z=b1y1+b2y2+. +bm ym min (6.4) при ограничениях a11у1 + a21у2+. + am1уm >= c1 a12у1 + a22у2+. + am2уm >= c2 (6.5) a1nу1 + a2nу2+. + amnуm >= cn и условии неотрицательности. y1>= 0; y2>= 0;: ym>= 0 Найти такой набор цен (оценок) ресурсов Y = 1, y2, . уm), при котором общие затраты на ресурсы будут минимальными при условии, что затраты на ресурсы при производстве каждого вида продукции будут не менее прибыли (выручки) от реализации этой продукции

Цены ресурсов у1, у2, . уm в экономической литературе получили различные названия: учетные, неявные, теневые. Смысл этих названий состоит в том, что этоусловные, «ненастоящие» цены. В отличие от «внешних» цен c1, с2, . cn на продукцию, известных, как правило, до начала производства, цены ресурсов у1, у2, . уnявляются внутренними, ибо они задаются не извне, а определяются непосредственно в результате решения задачи, поэтому их чаще называют оценками ресурсов.

Каждая задача линейного программирования, называемая прямой или исходной, тесно связана с другой задачей, ее называют двойственной.

Математические модели этих задач имеют следующий вид.

Zmax=

,

двойственная задача:

Zmin=

,

Источник

Оцените статью
A = (A5, A4, A2) =