Cos sin в питоне

Модуль math . Тригонометрические функции

Все тригонометрические функции оперируют радианами. Зависимость между радианами и градусами определяется по формуле:

Если известен угол в градусах, то для корректной работы тригонометрических функций, этот угол нужно преобразовать в радианы.

Например. Задан угол, имеющий n градусов. Найти арккосинус этого угла. В этом случае формула вычисления результата будет следующей:

. n_rad = n*3.1415/180 # получить угол в радианах ac = math.acos(n_rad) # вычислить арккосинус .

Чтобы получить более точное значение результата, в программе можно использовать константу math.pi , которая определяет число π. В этом случае текст программы будет иметь следующий вид

n_rad = n*math.pi/180 # получить угол в радианах ac = math.acos(n_rad) # вычислить арккосинус
2. Средства языка Python для конвертирования из градусов в радианы и наоборот. Функции math.degrees(x) и math.radians(x)

В языке Python существуют функции преобразования из градусов в радианы и, наоборот, из радиан в градусы.

Функция math.degrees(x) конвертирует значение параметра x из радиан в градусы.
Функция math.radians(x) конвертирует значение параметра x из градусов в радианы.

# Функция math.degrees(x) import math x = 1 # x - угол в радианах y = math.degrees(x) # y = 57.29577951308232 - угол в градусах x = math.pi # x = 3.1415. y = math.degrees(x) # y = 180.0 # Функция math.radians(x) x = 180.0/math.pi y = math.radians(x) # y = 1.0 x = 45 # x - угол в градусах y = math.radians(x) # y = 0.7853981633974483
3. Ограничения на использование тригонометрических функций

При использовании тригонометрических функций следует учитывать соответствующие ограничения, которые следуют из самой сущности этих функций. Например, не существует арксинуса из числа, которое больше 1.
Если при вызове функции задать неправильный аргумент, то интерпретатор выдаст соответствующее сообщение об ошибке

ValueError: math domain error
4. Функция math.acos(x) . Арккосинус угла

Функция acos(x) возвращает арккосинус угла x . Аргумент x задается в радианах и может быть как целым числом, так и вещественным числом.

# Функция math.acos(x) import math n = float(input('n = ')) # ввести n n_rad = n*math.pi/180 # получить угол в радианах ac = math.acos(n_rad) # вычислить арккосинус print('n_rad = ', n_rad) print('ac = ', ac)

Результат работы программы

n = 35 n_rad = 0.6108652381980153 ac = 0.913643357298706
5. Функция math.asin(x) . Арксинус

Функция math.asin(x) вычисляет арксинус угла от аргумента x . Значение аргумента x задается в радианах.

# Функция math.asin(x) import math n = 10 # n - угол в градусах # конвертировать из градусов в радианы n_rad = n*math.pi/180 # n_rad = 0.17453292519943295 # вычислить арксинус asn = math.asin(n_rad) # asn = 0.17543139267904395
6. Функция math.atan(x) . Арктангенс

Функция math.atan(x) возвращает арктангенс аргумента x, значение которого задается в радианах. При использовании функции важно помнить допустимые значения x , которые можно задавать при вычислении арктангенса.

# Функция math.atan(x) import math n = 60 # n - угол в градусах # конвертировать из градусов в радианы n_rad = n*math.pi/180 # n_rad = 1.0471975511965976 # вычислить арктангенс atn = math.atan(n_rad) # atn = 0.808448792630022
7. Функция math.atan2(x, y) . Арктангенс от x/y

Функция math.atan2(x, y) вычисляет арктангенс угла от деления x на y . Функция возвращает результат от —π до π. Аргументы x , y определяют координаты точки, через которую проходит отрезок от начала координат. В отличие от функции atan(x) , данная функция правильно вычисляет квадрант, влияющий на знак результата.

# Функция math.atan2(x,y) import math x = -2 y = -1 res = math.atan2(x, y) # res = -2.0344439357957027
8. Функция math.cos(x). Косинус угла

Функция math.cos(x) вычисляет косинус угла для аргумента x . Значение аргумента x задается в радианах.

# Функция math.cos(x) import math x = 0 y = math.cos(x) # y = 1.0 x = math.pi y = math.cos(x) # y = -1.0 x = 2 # 2 радианы y = math.cos(x) # y = -0.4161468365471424
9. Функция math.sin(x)

Функция math.sin(x) возвращает синус угла от аргумента x , заданного в радианах.

# Функция math.sin(x) import math x = math.pi y = math.sin(x) # y = 1.2246467991473532e-16 x = 0 y = math.sin(x) # y = 0.0 x = 2 # 2 радиана y = math.sin(x)
10. Функция math.hypot(x, y) . Евклидовая норма (Euclidean norm)

Функция возвращает Евклидовую норму, которая равна длине вектора от начала координат до точки x , y и определяется по формуле

# Функция math.hypot(x, y) import math x = 1.0 y = 1.0 z = math.hypot(x, y) # z = 1.4142135623730951 x = 3.0 y = 4.0 z = math.hypot(x, y) # z = 5.0
11. Функция math.tan(x) . Тангенс угла x

Функция math.tan(x) возвращает тангенс от аргумента x . Аргумент x задается в радианах.

# Функция math.tan(x, y) import math x = 1.0 y = math.tan(x) # y = 1.5574077246549023 x = 0.0 y = math.tan(x) # y = 0.0

Связанные темы

Источник

Модуль math

Python 3 логотип

Модуль math – один из наиважнейших в Python. Этот модуль предоставляет обширный функционал для работы с числами.

math.ceil(X) – округление до ближайшего большего числа.

math.copysign(X, Y) — возвращает число, имеющее модуль такой же, как и у числа X, а знак — как у числа Y.

math.factorial(X) — факториал числа X.

math.floor(X) — округление вниз.

math.fmod(X, Y) — остаток от деления X на Y.

math.frexp(X) — возвращает мантиссу и экспоненту числа.

math.ldexp(X, I) — X * 2 i . Функция, обратная функции math.frexp().

math.fsum(последовательность) — сумма всех членов последовательности. Эквивалент встроенной функции sum(), но math.fsum() более точна для чисел с плавающей точкой.

math.isfinite(X) — является ли X числом.

math.isinf(X) — является ли X бесконечностью.

math.isnan(X) — является ли X NaN (Not a Number — не число).

math.modf(X) — возвращает дробную и целую часть числа X. Оба числа имеют тот же знак, что и X.

math.trunc(X) — усекает значение X до целого.

math.expm1(X) — e X — 1. При X → 0 точнее, чем math.exp(X)-1.

math.log(X, [base]) — логарифм X по основанию base. Если base не указан, вычисляется натуральный логарифм.

math.log1p(X) — натуральный логарифм (1 + X). При X → 0 точнее, чем math.log(1+X).

math.log10(X) — логарифм X по основанию 10.

math.log2(X) — логарифм X по основанию 2.

math.sqrt(X) — квадратный корень из X.

math.acos(X) — арккосинус X. В радианах.

math.asin(X) — арксинус X. В радианах.

math.atan(X) — арктангенс X. В радианах.

math.atan2(Y, X) — арктангенс Y/X. В радианах. С учетом четверти, в которой находится точка (X, Y).

math.cos(X) — косинус X (X указывается в радианах).

math.sin(X) — синус X (X указывается в радианах).

math.tan(X) — тангенс X (X указывается в радианах).

math.hypot(X, Y) — вычисляет гипотенузу треугольника с катетами X и Y (math.sqrt(x * x + y * y)).

math.degrees(X) — конвертирует радианы в градусы.

math.radians(X) — конвертирует градусы в радианы.

math.cosh(X) — вычисляет гиперболический косинус.

math.sinh(X) — вычисляет гиперболический синус.

math.tanh(X) — вычисляет гиперболический тангенс.

math.acosh(X) — вычисляет обратный гиперболический косинус.

math.asinh(X) — вычисляет обратный гиперболический синус.

math.atanh(X) — вычисляет обратный гиперболический тангенс.

math.erf(X) — функция ошибок.

math.erfc(X) — дополнительная функция ошибок (1 — math.erf(X)).

math.gamma(X) — гамма-функция X.

math.lgamma(X) — натуральный логарифм гамма-функции X.

math.pi — pi = 3,1415926.

Для вставки кода на Python в комментарий заключайте его в теги

  • Книги о Python
  • GUI (графический интерфейс пользователя)
  • Курсы Python
  • Модули
  • Новости мира Python
  • NumPy
  • Обработка данных
  • Основы программирования
  • Примеры программ
  • Типы данных в Python
  • Видео
  • Python для Web
  • Работа для Python-программистов

Источник

Читайте также:  Авто блок схема python
Оцените статью