Conda install opencv python

Conda install opencv python

Working with Images — Getting Started

Working with Images — Image Processing

  • Image Resizing using OpenCV | Python
  • Python OpenCV | cv2.erode() method
  • Python | Image blurring using OpenCV
  • Python OpenCV | cv2.copyMakeBorder() method
  • Python | Grayscaling of Images using OpenCV
  • Image Processing in Python (Scaling, Rotating, Shifting and Edge Detection)
  • Erosion and Dilation of images using OpenCV in python
  • OpenCV Python Program to analyze an image using Histogram
  • Histograms Equalization in OpenCV
  • Python | Thresholding techniques using OpenCV | Set-1 (Simple Thresholding)
  • Python | Thresholding techniques using OpenCV | Set-2 (Adaptive Thresholding)
  • Python | Thresholding techniques using OpenCV | Set-3 (Otsu Thresholding)
  • OpenCV: Segmentation using Thresholding
  • Python OpenCV | cv2.cvtColor() method
  • Filter Color with OpenCV
  • Python | Denoising of colored images using opencv
  • Python | Visualizing image in different color spaces
  • Find Co-ordinates of Contours using OpenCV | Python
  • Python | Bilateral Filtering
  • Image Inpainting using OpenCV
  • Python | Intensity Transformation Operations on Images
  • Python | Image Registration using OpenCV
  • Python | Background subtraction using OpenCV
  • Background Subtraction in an Image using Concept of Running Average
  • Python | Foreground Extraction in an Image using Grabcut Algorithm
  • Python | Morphological Operations in Image Processing (Opening) | Set-1
  • Python | Morphological Operations in Image Processing (Closing) | Set-2
  • Python | Morphological Operations in Image Processing (Gradient) | Set-3
  • Image segmentation using Morphological operations in Python
  • Image Translation using OpenCV | Python
  • Image Pyramid using OpenCV | Python
Читайте также:  Learn php for web development

Working with Images — Feature Detection and Description

Working with Images — Drawing Functions

Working with Videos

Applications and Projects

  • Python | Program to extract frames using OpenCV
  • Displaying the coordinates of the points clicked on the image using Python-OpenCV
  • White and black dot detection using OpenCV | Python
  • Python | OpenCV BGR color palette with trackbars
  • Draw a rectangular shape and extract objects using Python’s OpenCV
  • Invisible Cloak using OpenCV | Python Project
  • ML | Unsupervised Face Clustering Pipeline
  • Saving Operated Video from a webcam using OpenCV
  • Face Detection using Python and OpenCV with webcam
  • Opening multiple color windows to capture using OpenCV in Python
  • Python | Play a video in reverse mode using OpenCV
  • Template matching using OpenCV in Python
  • Cartooning an Image using OpenCV – Python
  • Vehicle detection using OpenCV Python
  • Count number of Faces using Python – OpenCV
  • Live Webcam Drawing using OpenCV
  • Detect and Recognize Car License Plate from a video in real time

OpenCV Projects

  • Build GUI Application Pencil Sketch from Photo in Python
  • Python OpenCV – Drowsiness Detection
  • Face Alignment with OpenCV and Python
  • Age Detection using Deep Learning in OpenCV
  • Right and Left Hand Detection Using Python
  • OpenCV Python: How to detect if a window is closed?
  • Save frames of live video with timestamps – Python OpenCV
  • Detecting low contrast images with OpenCV, scikit-image, and Python
  • Animate image using OpenCV in Python
  • Drawing a cross on an image with OpenCV
  • Blur and anonymize faces with OpenCV and Python
  • Face detection using Cascade Classifier using OpenCV-Python
  • Real time object color detection using OpenCV
  • Python – Writing to video with OpenCV
  • Add image to a live camera feed using OpenCV-Python
  • Face and Hand Landmarks Detection using Python – Mediapipe, OpenCV
  • Emotion Based Music Player – Python Project
  • Realtime Distance Estimation Using OpenCV – Python
  • Webcam QR code scanner using OpenCV
  • Color Identification in Images using Python – OpenCV
  • Real-Time Edge Detection using OpenCV in Python | Canny edge detection method
  • Opencv Python program for Face Detection
Читайте также:  Datetime php set hours

Источник

Conda Install OpenCV in Python

Conda Install OpenCV in Python

  1. Use the pip Command to Install the OpenCV Module in Python
  2. Use the conda Command to Install the OpenCV Module in Python
  3. Use the Anaconda Navigator to Install the OpenCV Module in Python
  4. Conclusion

Anaconda is a widely adopted, open-source distribution of Python and R programming languages that simplifies package management and streamlines the setup process for data science and scientific computing projects. It has an extensive collection of pre-built packages, including popular libraries, making it a powerful tool for managing software dependencies.

OpenCV, short for Open Source Computer Vision Library, is a highly acclaimed library for computer vision and image processing tasks. It offers many functions and algorithms that empower developers to perform tasks like image and video analysis, object detection, facial recognition, and more.

OpenCV is widely used in various domains, including robotics, augmented reality, surveillance, and medical imaging. OpenCV is a cross-platform library accessible in several programming languages like Python, C++, etc.

Understanding the process of installing OpenCV in Python using conda is essential for any aspiring data scientist, computer vision engineer, or developer working with image-related tasks. By leveraging Conda’s package management capabilities, we can ensure a hassle-free installation process, avoid version conflicts, and effortlessly set up the necessary dependencies required for OpenCV to function optimally.

This tutorial will discuss different methods to install the cv2 module in Python for Anaconda users.

Use the pip Command to Install the OpenCV Module in Python

Utilizing the pip command, we can effortlessly install and manage Python packages, including OpenCV, simplifying integrating computer vision capabilities into our projects. The pip command can be used here to install this package on the system through the command terminal.

Читайте также:  Инпут это в html

We can use the following command to install the OpenCV module in Python with the pip package manager.

conda install cv2 using pip

pip : The command-line tool for installing Python packages.

install : The command instructing pip to install the specified package.

Use the conda Command to Install the OpenCV Module in Python

conda is a popular package management system and environment management system that simplifies the installation and management of software packages. It is particularly beneficial for data science and scientific computing projects.

conda allows us to create isolated environments, manage dependencies, and ensure reproducibility in our Python projects. Using the conda command, we can seamlessly install the OpenCV module in Python.

We can use the following command to install the OpenCV module in Python with the conda package manager.

The above command downloads and installs the latest version of the OpenCV module available in the default conda channel. But, the most recent version of the module may not be accessible in the default channel of conda sometimes.

If that happens, we can utilize conda-forge . The conda-forge is a community-wide exertion that attempts to provide missing packages or updated modules that are sometimes missing from the default channels.

We can use the following command to install the OpenCV module in Python with the conda-forge method.

conda install -c conda-forge opencv 

conda install cv2 using conda

conda : The package and environment management command-line tool.

install : The command indicating we want to install a package.

-c conda-forge : Specifies the package installation channel. The conda-forge channel provides community-driven packages.

Use the Anaconda Navigator to Install the OpenCV Module in Python

Anaconda Navigator is a desktop graphical user interface (GUI) included in the Anaconda distribution. It offers a convenient way to manage environments, install packages, and launch applications related to data science.

With Anaconda Navigator, we can effortlessly install the OpenCV module and explore its powerful computer vision capabilities.

Steps to install OpenCV using the GUI:

Launch Anaconda Navigator from your system’s applications or Start menu.

conda install cv2 using anaconda navigator step1

Once Anaconda Navigator opens, you will see a list of available environments on the left-hand side. Select the environment where you want to install OpenCV or create a new environment if needed.

conda install cv2 using anaconda navigator step2

Select All from the dropdown menu.

conda install cv2 using anaconda navigator step3

In the search bar located in the top-right corner, type opencv and press Enter .

conda install cv2 using anaconda navigator step4

From the search results, select the opencv package and click Apply to initiate the installation process.

conda install cv2 using anaconda navigator step5

Anaconda Navigator will download and install the OpenCV module into the selected environment.

conda install cv2 using anaconda navigator step6

Once the installation is complete, you can close the Anaconda Navigator and start using OpenCV in your Python projects.

conda install cv2 using anaconda navigator step7

Conclusion

This tutorial explored three methods to install the OpenCV module in Python: the pip command, the conda command, and the Anaconda Navigator GUI. Each method offers advantages and disadvantages, catering to different preferences and requirements.

Using the pip command provides a straightforward and widely recognized approach. It allows for quick installation and provides access to the latest package versions.

However, it may have limitations in managing complex dependencies or ensuring environment reproducibility.

The conda command, on the other hand, excels in managing environments, dependencies, and version control. It provides a powerful solution for creating isolated environments and handling complex package configurations.

However, it may have a narrower selection of package versions compared to pip .

The Anaconda Navigator GUI offers a user-friendly and intuitive interface for package installation. It simplifies the process, making it accessible to users who prefer graphical interfaces.

However, it may need more advanced options and fine-grained control than command-line methods.

In terms of the most preferred method, it ultimately depends on the specific use case and personal preference. Overall, each method offers its strengths, and the choice depends on the project’s specific needs and personal preferences.

Vaibhhav is an IT professional who has a strong-hold in Python programming and various projects under his belt. He has an eagerness to discover new things and is a quick learner.

Related Article — Python OpenCV

Источник

Как установить библиотеку OpenCV в Python – 2 способа

OpenCV – это библиотека Python с открытым исходным кодом, которая используется для понимания содержимого цифрового изображения. CV – это аббревиатура компьютерного зрения. Она извлекает описание из изображения в реальном времени или цифрового изображения, которое может быть объектом, текстовым описанием и т. д.

Мы можем выполнять множество задач с помощью библиотеки OpenCV, таких как обнаружение лиц, распознавание лиц, обнаружение blob-объектов, выделение границ, фильтр изображений, сопоставление шаблонов и т.д. Разберем как установить библиотеку OpenCV в нашей среде Python.

Установка OpenCV

OpenCV устанавливается следующими способами:

Использование команды pip

Откройте командную строку и введите следующую команду.

pip install opencv-contrib-python --upgrade

Или можно установить без дополнительного модуля с помощью следующей команды:

Установка OpenCV в Python

Теперь мы проверим правильность установки OpenCV. Импортируйте модуль cv2 и распечатайте его версию.

Импорт модуля cv2

Если он правильно установлен, то он покажет свою версию.

Использование Anaconda

Anaconda – это программный пакет Python. Anaconda с Jupyter – лучший способ работать с OpenCV. Во-первых, нам нужно установить установщик графики Anaconda с официального сайта.

Установщик Anaconda

Теперь выберите подходящий установщик для вашей версии Python.

Соответствующий версии Python установщик

После завершения загрузки откройте командную строку Anaconda и введите следующую команду.

conda install -c conda-forge opencv

Завершение загрузки

Затем нажмите кнопку ввода, загрузится всю номинальная конфигурация OpenCV.

Загрузка OpenCV

Теперь вы готовы работать с OpenCV.

Источник

Оцените статью