Алгоритм решения квадратного уравнения питон

Найти корни квадратного уравнения

Таким образом, программа для нахождения корней квадратного уравнения должна иметь три ветви условного оператора.

Функция float преобразует переданный ей аргумент в вещественное число.

import math print("Введите коэффициенты для уравнения") print("ax^2 + bx + c = 0:") a = float(input("a = ")) b = float(input("b = ")) c = float(input("c = ")) discr = b ** 2 - 4 * a * c print("Дискриминант D = %.2f" % discr) if discr > 0: x1 = (-b + math.sqrt(discr)) / (2 * a) x2 = (-b - math.sqrt(discr)) / (2 * a) print("x1 = %.2f \nx2 = %.2f" % (x1, x2)) elif discr == 0: x = -b / (2 * a) print("x = %.2f" % x) else: print("Корней нет")
Введите коэффициенты для уравнения ax^2 + bx + c = 0: a = 2 b = 4 c = 2 Дискриминант D = 0.00 x = -1.00
Введите коэффициенты для уравнения ax^2 + bx + c = 0: a = 3.2 b = -7.8 c = 1 Дискриминант D = 48.04 x1 = 2.30 x2 = 0.14
Введите коэффициенты для уравнения ax^2 + bx + c = 0: a = 8 b = 4 c = 2 Дискриминант D = -48.00 Корней нет

Обратите внимание, что для данной программы коэффициент a не должен быть равен нулю. Иначе в теле условного оператора будет происходить попытка деления на 0, что приведет к аварийному завершению программы.

Если a = 0, то квадратное уравнение превращается в линейное, которое решается иным способом. Оно всегда имеет один корень.

Источник

Решение квадратных уравнений в Python

Решение квадратных уравнений в Python

Статьи

Введение

В ходе статьи научимся решать квадратные уравнения при помощи языка программирования Python.

Решение квадратных уравнений в Python

Для написания кода нам понадобится метод sqrt() из модуля math, который возвращает квадратный корень числа. Импортируем его:

Теперь дадим пользователю возможность ввести коэффициенты a, b и c:

from math import sqrt a = float(input('a = ')) b = float(input('b = ')) c = float(input('c = '))

Вычислим дискриминант по формуле:

from math import sqrt a = float(input('a = ')) b = float(input('b = ')) c = float(input('c = ')) d = b**2 - 4 * a * c

Перейдём к нахождению корней. Зададим условие, что если дискриминант больше нуля, то x1 и x2 будут высчитаны по формуле:

from math import sqrt a = float(input('a = ')) b = float(input('b = ')) c = float(input('c = ')) d = b**2 - 4 * a * c if d > 0: x1 = (-b + sqrt(d) / (2 * a)) x2 = (-b - sqrt(d) / (2 * a)) print(f'x1 = ; x2 = ')

Если же дискриминант равен нулю, то будет всего один корень по формуле:

from math import sqrt a = float(input('a = ')) b = float(input('b = ')) c = float(input('c = ')) d = b**2 - 4 * a * c if d > 0: x1 = (-b + sqrt(d) / (2 * a)) x2 = (-b - sqrt(d) / (2 * a)) print(f'x1 = ; x2 = ') elif d == 0: x1 = -b / (2 * a) print(f'x1 = ')

Если же дискриминант оказался отрицательным, это означает что корней нет:

from math import sqrt a = float(input('a = ')) b = float(input('b = ')) c = float(input('c = ')) d = b**2 - 4 * a * c if d > 0: x1 = (-b + sqrt(d) / (2 * a)) x2 = (-b - sqrt(d) / (2 * a)) print(f'x1 = ; x2 = ') elif d == 0: x1 = -b / (2 * a) print(f'x1 = ') else: print('Нет корней')

Заключение

В ходе статьи мы с Вами написали небольшую программку на языке программирования Python, которая умеет решать квадратные уравнения. Надеюсь Вам понравилась статья, желаю удачи и успехов! 🙂

Источник

Алгоритм решения квадратного уравнения питон

Как решать квадратные уравнения на Python: Примеры и объяснения

Как решать квадратные уравнения на Python: Примеры и объяснения

Квадратные уравнения являются одним из наиболее распространенных типов уравнений, которые встречаются в математике и науке. Решение квадратных уравнений на Python может быть полезно в различных областях, таких как научные исследования, инженерные расчеты, финансовая аналитика и многих других.

В данной статье мы рассмотрим несколько примеров решения квадратных уравнений на Python с подробными объяснениями.

Решение квадратного уравнения с использованием дискриминанта на Python

from math import sqrt def solve_quadratic_equation(a, b, c):  """  Решает квадратное уравнение ax^2 + bx + c = 0   :param a: коэффициент при x^2  :param b: коэффициент при x  :param c: свободный член  :return: корни уравнения  """  discriminant = b**2 - 4*a*c if discriminant > 0:  x1 = (-b + sqrt(discriminant)) / (2*a)  x2 = (-b - sqrt(discriminant)) / (2*a)  return x1, x2 elif discriminant == 0:  x1 = -b / (2*a)  return x1 else:  return None  # Задаем коэффициенты уравнения a = 1 b = -3 c = 2  # Решение уравнения и вывод результатов result = solve_quadratic_equation(a, b, c) if result is None:  print("Уравнение не имеет действительных корней") elif isinstance(result, tuple):  print(f"Корни уравнения: x1 = result[0]>, x2 = result[1]>") else:  print(f"Корень уравнения: x = result>")  # Корни уравнения: x1 = 2.0, x2 = 1.0 

Данный код представляет функцию solve_quadratic_equation , которая решает квадратное уравнение вида ax^2 + bx + c = 0 , где a , b и c — коэффициенты уравнения. Функция использует импортированную из модуля math функцию sqrt для вычисления квадратного корня.

Функция solve_quadratic_equation принимает три аргумента — коэффициенты a , b и c уравнения, и возвращает корни уравнения в виде кортежа (tuple) или одиночного значения, в зависимости от количества корней.

Решение системы квадратных уравнений в Python

import math def solve_quadratic_equation(a, b, c):  """  Решает квадратное уравнение ax^2 + bx + c = 0   :param a: коэффициент при x^2  :param b: коэффициент при x  :param c: свободный член  :return: корни уравнения  """  discriminant = b**2 - 4*a*c if discriminant > 0:  x1 = (-b + math.sqrt(discriminant)) / (2*a)  x2 = (-b - math.sqrt(discriminant)) / (2*a)  return x1, x2 elif discriminant == 0:  x1 = -b / (2*a)  return x1 else:  return None  def solve_system_of_equations(eq1, eq2):  """  Решает систему из двух квадратных уравнений   :param eq1: кортеж с коэффициентами первого уравнения (a, b, c)  :param eq2: кортеж с коэффициентами второго уравнения (a, b, c)  :return: корни системы уравнений  """  a1, b1, c1 = eq1 a2, b2, c2 = eq2 # Решение первого уравнения  x1 = solve_quadratic_equation(a1, b1, c1)  if x1 is None:  return None  # Решение второго уравнения  x2 = solve_quadratic_equation(a2, b2, c2)  if x2 is None:  return None  return x1, x2 # Задаем систему уравнений eq1 = (1, -3, 2) eq2 = (2, 5, -3)  # Решение системы уравнений и вывод результатов result = solve_system_of_equations(eq1, eq2) if result is None:  print("Система уравнений не имеет действительных корней") else:  x1, x2 = result print(f"Корни системы уравнений: x1 = x1>, x2 = x2>")  # Корни системы уравнений: x1 = (2.0, 1.0), x2 = (0.5, -3.0) 

Данный код решает систему из двух квадратных уравнений и выводит результаты.

Функция solve_quadratic_equation(a, b, c) решает квадратное уравнение вида ax^2 + bx + c = 0 , где a , b и c — это коэффициенты уравнения. Она использует дискриминант ( discriminant ), который вычисляется как разность квадрата коэффициента при x ( b ) и произведения . Затем, в зависимости от значения дискриминанта, функция возвращает корни уравнения или None , если уравнение не имеет действительных корней.

Решение квадратного уравнения с использованием библиотеки numpy для работы с массивами и матрицами

import numpy as np def solve_quadratic_equation(a, b, c):  """  Решает квадратное уравнение ax^2 + bx + c = 0   :param a: коэффициент при x^2  :param b: коэффициент при x  :param c: свободный член  :return: корни уравнения  """  discriminant = b**2 - 4*a*c if discriminant > 0:  x1 = (-b + np.sqrt(discriminant)) / (2*a)  x2 = (-b - np.sqrt(discriminant)) / (2*a)  return x1, x2 elif discriminant == 0:  x1 = -b / (2*a)  return x1 else:  return None  # Задаем коэффициенты уравнения a = 1 b = -3 c = 2  # Решение уравнения и вывод результатов result = solve_quadratic_equation(a, b, c) if result is None:  print("Уравнение не имеет действительных корней") elif isinstance(result, tuple):  print(f"Корни уравнения: x1 = result[0]>, x2 = result[1]>") else:  print(f"Корень уравнения: x = result>")  # Корни уравнения: x1 = 2.0, x2 = 1.0 

Данный код представляет функцию solve_quadratic_equation(a, b, c) , которая решает квадратное уравнение вида ax^2 + bx + c = 0 , где a , b и c — это коэффициенты уравнения, передаваемые в качестве аргументов в функцию. Функция использует библиотеку NumPy, импортированную как np, для выполнения математических операций, таких как извлечение квадратного корня.

Заключение

Решение квадратных уравнений на Python может быть полезным навыком при работе с математическими и научными расчетами.

В данной статье мы рассмотрели три примера решения квадратных уравнений на Python.

Источник

Читайте также:  Select query in php order by desc
Оцените статью